Abstract
AbstractMobile crowdsensing is a burgeoning concept that allows smart cities to leverage the sensing power and ubiquitous nature of mobile devices in order to capture and map phenomena of common interest. At the core of any successful mobile crowdsensing application is active user participation, without which the system is of no value in sensing the phenomenon of interest. A major challenge militating against widespread use and adoption of mobile crowdsensing applications is the issue of how to identify the most appropriate incentive mechanism for adequately and efficiently motivating participants. This paper reviews literature on incentive mechanisms for mobile crowdsensing and proposes the concept of SPECTRUM as a guide for inferring the most appropriate type of incentive suited to any given crowdsensing task. Furthermore, the paper highlights research challenges and areas where additional studies related to the different factors outlined in the concept of SPECTRUM are needed to improve citizen participation in mobile crowdsensing. It is envisaged that the broad range of factors covered in SPECTRUM will enable smart cities to efficiently engage citizens in large-scale crowdsensing initiatives. More importantly, the paper is expected to trigger empirical investigations into how various factors as outlined in SPECTRUM can influence the type of incentive mechanism that is considered most appropriate for any given mobile crowdsensing initiative.
Publisher
Springer Science and Business Media LLC
Reference136 articles.
1. Guo B, Wang Z, Yu Z, Wang Y, Yen NY, Huang R, Zhou X (2015) Mobile crowd sensing and computing: the review of an emerging human-powered sensing paradigm. ACM Comput Surv 48(1):1–33
2. Lane ND, Miluzzo E, Lu H, Peebles D, Choudhury T, Campbell AT (2010) A survey of mobile phone sensing. IEEE Commun Mag 48(9):140–150
3. Xiao Y, Simoens P, Pillai P, Ha K, Satyanarayanan M (2013) Lowering the barriers to large-scale mobile crowdsensing. Proceedings of the 14th workshop on mobile computing systems and applications, HotMobile’14. ACM, Jekyll Island, pp 9–14
4. Feese S, Burscher MJ, Jonas K, Tröster G (2014) Sensing spatial and temporal coordination in teams using the smartphone. Hum Cent Comput Inf Sci 4(1):1–18
5. Cardone G, Cirri A, Corradi A, Foschini L (2014) The participact mobile crowd sensing living lab: the testbed for smart cities. IEEE Commun Mag 52(10):78–85
Cited by
50 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献