Abstract
Abstract
In data center companies, cloud computing can host multiple types of heterogeneous virtual machines (VMs) and provide many features, including flexibility, security, support, and even better maintenance than traditional centers. However, some issues need to be considered, such as the optimization of energy usage, utilization of resources, reduction of time consumption, and optimization of virtual machine placement. Therefore, this paper proposes an alternative multiobjective optimization (MOP) approach that combines the salp swarm and sine-cosine algorithms (MOSSASCA) to determine a suitable solution for virtual machine placement (VMP). The objectives of the proposed MOSSASCA are to maximize mean time before a host shutdown (MTBHS), to reduce power consumption, and to minimize service level agreement violations (SLAVs). The proposed method improves the salp swarm and the sine-cosine algorithms using an MOP technique. The SCA works by using a local search approach to improve the performance of traditional SSA by avoiding trapping in a local optimal solution and by increasing convergence speed. To evaluate the quality of MOSSASCA, we perform a series of experiments using different numbers of VMs and physical machines. The results of MOSSASCA are compared with well-known methods, including the nondominated sorting genetic algorithm (NSGA-II), multiobjective particle swarm optimization (MOPSO), a multiobjective evolutionary algorithm with decomposition (MOEAD), and a multiobjective sine-cosine algorithm (MOSCA). The results reveal that MOSSASCA outperforms the compared methods in terms of solving MOP problems and achieving the three objectives. Compared with the other methods, MOSSASCA exhibits a better ability to reduce power consumption and SLAVs while increasing MTBHS. The main differences in terms of power consumption between the MOSCA, MOPSO, MOEAD, and NSGA-II and the MOSSASCA are 0.53, 1.31, 1.36, and 1.44, respectively. Additionally, the MOSSASCA has higher MTBHS value than MOSCA, MOPSO, MOEAD, and NSGA-II by 362.49, 274.70, 585.73 and 672.94, respectively, and the proposed method has lower SLAV values than MOPSO, MOEAD, and NSGA-II by 0.41, 0.28, and 1.27, respectively.
Publisher
Springer Science and Business Media LLC
Reference79 articles.
1. Xu M, Tian W, Buyya R (2017) A survey on load balancing algorithms for virtual machines placement in cloud computing. Concurrency Comput Pract Exp 29(12):e4123
2. Zheng Q, Li Jia, Dong Bo, Li Rui, Shah Nazaraf, Tian Feng (2016) Multi-objective optimization algorithm based on bbo for virtual machine consolidation problem. In: IEEE international conference on parallel and distributed systems. Piscataway, IEEE, pp 414–421
3. Tang M, Pan S (2015) A hybrid genetic algorithm for the energy-efficient virtual machine placement problem in data centers. Neural Process Lett 41(2):211–221
4. Fu X, Zhao Q, Wang J, Zhang L, Qiao L (2018) Energy-aware vm initial placement strategy based on bpso in cloud computing. Sci Program 2018:9471356
5. Bajo J, De la PF, Corchado JM, Rodríguez S (2016) A low-level resource allocation in an agent-based cloud computing platform. Appl Softw Comput 48:716–728
Cited by
51 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献