Improved multiobjective salp swarm optimization for virtual machine placement in cloud computing

Author:

Alresheedi Shayem Saleh,Lu Songfeng,Abd Elaziz MohamedORCID,Ewees Ahmed A.

Abstract

Abstract In data center companies, cloud computing can host multiple types of heterogeneous virtual machines (VMs) and provide many features, including flexibility, security, support, and even better maintenance than traditional centers. However, some issues need to be considered, such as the optimization of energy usage, utilization of resources, reduction of time consumption, and optimization of virtual machine placement. Therefore, this paper proposes an alternative multiobjective optimization (MOP) approach that combines the salp swarm and sine-cosine algorithms (MOSSASCA) to determine a suitable solution for virtual machine placement (VMP). The objectives of the proposed MOSSASCA are to maximize mean time before a host shutdown (MTBHS), to reduce power consumption, and to minimize service level agreement violations (SLAVs). The proposed method improves the salp swarm and the sine-cosine algorithms using an MOP technique. The SCA works by using a local search approach to improve the performance of traditional SSA by avoiding trapping in a local optimal solution and by increasing convergence speed. To evaluate the quality of MOSSASCA, we perform a series of experiments using different numbers of VMs and physical machines. The results of MOSSASCA are compared with well-known methods, including the nondominated sorting genetic algorithm (NSGA-II), multiobjective particle swarm optimization (MOPSO), a multiobjective evolutionary algorithm with decomposition (MOEAD), and a multiobjective sine-cosine algorithm (MOSCA). The results reveal that MOSSASCA outperforms the compared methods in terms of solving MOP problems and achieving the three objectives. Compared with the other methods, MOSSASCA exhibits a better ability to reduce power consumption and SLAVs while increasing MTBHS. The main differences in terms of power consumption between the MOSCA, MOPSO, MOEAD, and NSGA-II and the MOSSASCA are 0.53, 1.31, 1.36, and 1.44, respectively. Additionally, the MOSSASCA has higher MTBHS value than MOSCA, MOPSO, MOEAD, and NSGA-II by 362.49, 274.70, 585.73 and 672.94, respectively, and the proposed method has lower SLAV values than MOPSO, MOEAD, and NSGA-II by 0.41, 0.28, and 1.27, respectively.

Publisher

Springer Science and Business Media LLC

Subject

General Computer Science

Reference79 articles.

1. Xu M, Tian W, Buyya R (2017) A survey on load balancing algorithms for virtual machines placement in cloud computing. Concurrency Comput Pract Exp 29(12):e4123

2. Zheng Q, Li Jia, Dong Bo, Li Rui, Shah Nazaraf, Tian Feng (2016) Multi-objective optimization algorithm based on bbo for virtual machine consolidation problem. In: IEEE international conference on parallel and distributed systems. Piscataway, IEEE, pp 414–421

3. Tang M, Pan S (2015) A hybrid genetic algorithm for the energy-efficient virtual machine placement problem in data centers. Neural Process Lett 41(2):211–221

4. Fu X, Zhao Q, Wang J, Zhang L, Qiao L (2018) Energy-aware vm initial placement strategy based on bpso in cloud computing. Sci Program 2018:9471356

5. Bajo J, De la PF, Corchado JM, Rodríguez S (2016) A low-level resource allocation in an agent-based cloud computing platform. Appl Softw Comput 48:716–728

Cited by 47 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3