A dynamic attention assessment and enhancement tool using computer graphics

Author:

Navalyal Geeta U,Gavas Rahul D

Abstract

AbstractTraining Programs to enhance Math Solving Skills, Memory, Visualization, etc in children are gaining popularity worldwide. Any skill is better acquired, when attention, the basic cognitive ability of the trainee is improved. This study makes an attempt to devise a technique in the form of a Brain Computer Interface (BCI) Game, to assist the trainers in monitoring and evaluating the attention levels of the trainees, at regular intervals during the training period.The gaming environment is designed using Open Source Graphics Library (OpenGL) package and the game control is through the player’s brain waves using the BCI technology. The players control the movement of an object from a source to a destination location on the screen by focussing their thought processes. The time taken to complete one game can be recorded. More the time taken, lesser would be the attention sustaining capacity of the player.Thirteen subjects under different levels of the ABACUS Math Solving training program controlled the ball movement while solving math problems mentally, the time taken reduced for most of the subjects as they reached higher levels of their training course, indicating the benefit of such training programmes. The game was also played by eight non-abacus literates. The evaluation procedure was found to be very easy and fast.

Publisher

Springer Science and Business Media LLC

Subject

General Computer Science

Reference15 articles.

1. Ferris GR, Munyon TP, Basik K, Buckley MR (2008) The Performance Evaluation Context: Social, Emotional, Cognitive, Political, and Relationship Components, Human Resource Management Review 18. Elsevier, pp 146–163, doi:10.1016/j.hrmr.2008.07.006

2. Payam Aghaei P, Tauseef G, Omar AZ, Gaetano G, Calvo RA: Brain-Computer Interface: Next Generation Thought Controlled Distributed Video Game Development Platform. IEEE Symposium on Computational Intelligence and Games (CIG’08). 2008.

3. Wang Q, Sourina O, Nguyen MK: EEG-based “Serious” Games Design for Medical Applications. Cyberworlds, International Conference, Singapore, IEEE Computer Society. 2010.

4. Nunez PL, Srinivasan R: Electric fields of the brain: the neurophysics of EEG. Oxford University Press, Inc, New York; 2006.

5. Rebsamen B, Burdet E, Guan C, Zhang H, Teo CL, Zeng Q, Ang M, Laugier C: A brain-controlled wheelchair based on P300 and path guidance. Biomedical Robotics and Biomechatronics. The First IEEE/RAS-EMBS International Conference. 2006.

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3