Facial UV map completion for pose-invariant face recognition: a novel adversarial approach based on coupled attention residual UNets

Author:

Na In Seop,Tran Chung,Nguyen Dung,Dinh SangORCID

Abstract

Abstract Pose-invariant face recognition refers to the problem of identifying or verifying a person by analyzing face images captured from different poses. This problem is challenging due to the large variation of pose, illumination and facial expression. A promising approach to deal with pose variation is to fulfill incomplete UV maps extracted from in-the-wild faces, then attach the completed UV map to a fitted 3D mesh and finally generate different 2D faces of arbitrary poses. The synthesized faces increase the pose variation for training deep face recognition models and reduce the pose discrepancy during the testing phase. In this paper, we propose a novel generative model called Attention ResCUNet-GAN to improve the UV map completion. We enhance the original UV-GAN by using a couple of U-Nets. Particularly, the skip connections within each U-Net are boosted by attention gates. Meanwhile, the features from two U-Nets are fused with trainable scalar weights. The experiments on the popular benchmarks, including Multi-PIE, LFW, CPLWF and CFP datasets, show that the proposed method yields superior performance compared to other existing methods.

Funder

National Research Foundation of Korea

Vietnam Academy of Science and Technology

U.S. Army Combat Capabilities Development Command

Publisher

Springer Science and Business Media LLC

Subject

General Computer Science

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3