A trust-aware task allocation method using deep q-learning for uncertain mobile crowdsourcing

Author:

Sun YongORCID,Tan Wenan

Abstract

Abstract Mobile crowdsourcing has emerged as a promising collaboration paradigm in which each spatial task requires a set of mobile workers in near vicinity to the target location. Considering the desired privacy of the participating mobile devices, trust is considered to be an important factor to enable effective collaboration in mobile crowdsourcing. The main impediment to the success of mobile crowdsourcing is the allocation of trustworthy mobile workers to nearby spatial tasks for collaboration. This process becomes substantially more challenging for large-scale online spatial task allocations in uncertain mobile crowdsourcing systems. The uncertainty can mislead the task allocation, resulting in performance degradation. Moreover, the large-scale nature of real-world crowdsourcing poses a considerable challenge to spatial task allocation in uncertain environments. To address the aforementioned challenges, first, an optimization problem of mobile crowdsourcing task allocation is formulated to maximize the trustworthiness of workers and minimize movement distance costs. Second, for the uncertain crowdsourcing scenario, a Markov decision process-based mobile crowdsourcing model (MCMDP) is formulated to illustrate the dynamic trust-aware task allocation problem. Third, to solve large-scale MCMDP problems in a stable manner, this study proposes an improved deep Q-learning-based trust-aware task allocation (ImprovedDQL-TTA) algorithm that combines trust-aware task allocation and deep Q-learning as an improvement over the uncertain mobile crowdsourcing systems. Finally, experimental results illustrate that the ImprovedDQL-TTA algorithm can stably converge in a number of training iterations. Compared with the reference algorithm, our proposed algorithm achieves effective solutions on the experimental data sets.

Funder

the National Natural Science Foundation of China

Natural Science Foundation of Anhui Province

Anhui Provincial Natural Science Foundation

Publisher

Springer Science and Business Media LLC

Subject

General Computer Science

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3