Testing of the voice communication in smart home care

Author:

Vanus Jan,Smolon Marek,Martinek Radek,Koziorek Jiri,Zidek Jan,Bilik Petr

Abstract

AbstractThis article is aimed to describe the method of testing the implementation of voice control over operating and technical functions of Smart Home Come. Custom control over operating and technical functions was implemented into a model of Smart Home that was equipped with KNX technology. A sociological survey focused on the needs of seniors has been carried out to justify the implementation of voice control into Smart Home Care. In the real environment of Smart Home Care, there are usually unwanted signals and additive noise that negatively affect the voice communication with the control system. This article describes the addition of a sophisticated system for filtering the additive background noise out of the voice communication with the control system. The additive noise significantly lowers the success of recognizing voice commands to control operating and technical functions of an intelligent building. Within the scope of the proposed application, a complex system based on fuzzy-neuron networks, specifically the ANFIS (Adaptive Neuro-Fuzzy Interference System) for adaptive suppression of unwanted background noises was created. The functionality of the designed system was evaluated both by subjective and by objective criteria (SSNR, DTW). Experimental results suggest that the studied system has the potential to refine the voice control of technical and operating functions of Smart Home Care even in a very noisy environment.

Funder

Opportunity for young researchers

VSB-Technical University Ostrava, FEECS under the project SGS

Publisher

Springer Science and Business Media LLC

Subject

General Computer Science

Reference17 articles.

1. Merz H, Hansenmann T, Hubener C (2008) Automatizované systémy budov: Sdělovací systémy KNX/EIB, LON a BACnet. 2008. vyd. Grada Publishing, a.s, Praha, 978-80-247-2367-9

2. Vanus J, Koziorek J, Hercik R (2013) Design of a smart building control with view to the senior citizens’ needs. In: ‘Book Design of a smart building control with view to the senior citizens’ needs’, 1st edn., pp 422–427

3. Park KH, Bien Z, Lee JJ, Kim BK, Lim JT, Kim JO, Lee WJ (2007) Robotic smart house to assist people with movement disabilities. Autonomous Robots 22(2):183–198

4. Hsu CL, and Chen KY (2009) Practical design of intelligent remote-controller with speech-recognition and self-learning function. In Machine Learning and Cybernetics, 2009 International Conference on (Vol. 6, pp. 3361–3368). IEEE. (2009, July).

5. Soda S, Nakamura M, Matsumoto S, Izumi S, Kawaguchi H, and Yoshimoto M (2012) Implementing virtual agent as an interface for smart home voice control. In Software Engineering Conference (APSEC), 2012 19th Asia-Pacific (Vol. 1, pp. 342–345). IEEE. (2012, December).

Cited by 41 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3