Enabling multi-hop remote method invocation in device-to-device networks

Author:

Le Minh,Clyde Stephen,Kwon Young-Woo

Abstract

Abstract To avoid shrinking down the performance and preserve energy, low-end mobile devices can collaborate with the nearby ones by offloading computation intensive code. However, despite the long research history, code offloading is dilatory and unfit for applications that require rapidly consecutive requests per short period. Even though Remote Procedure Call (RPC) is apparently one possible approach that can address this problem, the RPC-based or message queue-based techniques are obsolete or unwieldy for mobile platforms. Moreover, the need of accessibility beyond the limit reach of the device-to-device (D2D) networks originates another problem. This article introduces a new software framework to overcome these shortcomings by enabling routing RPC architecture on multiple group device-to-device networks. Our framework provides annotations for declaring distribution decision and out-of-box components that enable peer-to-peer offloading, even when a client app and the service provider do not have a direct network link or Internet connectivity. This article also discusses the two typical mobile applications that built on top of the framework for chatting and remote browsing services, as well as the empirical experiments with actual test-bed devices to unveil the low overhead conduct and similar performance as RPC in reality.

Funder

National Research Foundation of Korea

Publisher

Springer Science and Business Media LLC

Subject

General Computer Science

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The Multi-Hop D2D-Driven ABR Real-Time Video Streaming Transmission Mechanism in IoT;HUM-CENT COMPUT INFO;2024

2. Universal Multi-platform Interaction Approach for Distributed Internet of Things;Lecture Notes in Networks and Systems;2021-08-08

3. An earthquake alert system based on a collaborative approach using smart devices;2021 IEEE/ACM 8th International Conference on Mobile Software Engineering and Systems (MobileSoft);2021-05

4. Integrating the device-to-device communication technology into edge computing: A case study;Peer-to-Peer Networking and Applications;2020-10-26

5. Collaborative earthquake detection and response using smart devices;Proceedings of the IEEE/ACM 7th International Conference on Mobile Software Engineering and Systems;2020-07-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3