Using semantic clustering to support situation awareness on Twitter: the case of world views

Author:

Kingston Charlie,Nurse Jason R. C.,Agrafiotis Ioannis,Milich Andrew Burke

Abstract

AbstractIn recent years, situation awareness has been recognised as a critical part of effective decision making, in particular for crisis management. One way to extract value and allow for better situation awareness is to develop a system capable of analysing a dataset of multiple posts, and clustering consistent posts into different views or stories (or, ‘world views’). However, this can be challenging as it requires an understanding of the data, including determining what is consistent data, and what data corroborates other data. Attempting to address these problems, this article proposes Subject-Verb-Object Semantic Suffix Tree Clustering (SVOSSTC) and a system to support it, with a special focus on Twitter content. The novelty and value of SVOSSTC is its emphasis on utilising the Subject–Verb–Object typology in order to construct semantically consistent world views, in which individuals—particularly those involved in crisis response—might achieve an enhanced picture of a situation from social media data. To evaluate our system and its ability to provide enhanced situation awareness, we tested it against existing approaches, including human data analysis, using a variety of real-world scenarios. The results indicated a noteworthy degree of evidence (e.g., in cluster granularity and meaningfulness) to affirm the suitability and rigour of our approach. Moreover, these results highlight this article’s proposals as innovative and practical system contributions to the research field.

Publisher

Springer Science and Business Media LLC

Subject

General Computer Science

Reference68 articles.

1. Karandikar A (2010) Clustering short status messages: a topic model based approach. Ph.D. thesis, University of Maryland

2. Blandford A, Wong BW (2004) Situation awareness in emergency medical dispatch. Int J Hum Comput Stud 61(4):421–452

3. Kwak H, Lee C, Park H, Moon S (2010) What is Twitter, a social network or a news media? In: Proceedings of the 19th international conference on World Wide Web. ACM, pp 591–600.

4. Rodriguez MG, Gummadi K, Schoelkopf B (2014) Quantifying information overload in social media and its impact on social contagions. In: Proceedings of the 8th international conference on weblogs and social media. AAAI

5. Withnall A (2013) Twitter uncovers the top tweets of 2013. http://www.independent.co.uk/life-style/gadgets-and-tech/twitter-uncovers-the-top-tweets-of-2013-9007027.html. Accessed 8 Jul 2017

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3