Author:
Aghababaei Somayyeh,Makrehchi Masoud
Abstract
AbstractIncreasingly more applications rely on crowd-sourced data from social media. Some of these applications are concerned with real-time data streams, while others are more focused on acquiring temporal footprints from historical data. Nevertheless, determining the subset of “credible” users is crucial. While the majority of sampling approaches focus on individual static networks, dynamic user activity over time is usually not considered, which may result in activity gaps in the collected data. Models based on noisy and missing data can significantly degrade in performance. In this study, we demonstrate how to sample Twitter users in order to produce more credible data for temporal prediction models. We present an activity-based sampling approach where users are selected based on their historical activities in Twitter. The predictability of the collected content from activity-based and random sampling is compared in a content-based and user-centric temporal model. The results indicate the importance of an activity-oriented sampling method for the acquisition of more credible content for temporal models.
Funder
OTS scholarship
Natural Sciences and Engineering Research Council of Canada
Publisher
Springer Science and Business Media LLC
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献