Newspaper article-based agent control in smart city simulations

Author:

Kim Euhee,Jang Sejun,Li Shuyu,Sung YunsickORCID

Abstract

Abstract The latest research on smart city technologies mainly focuses on utilizing cities’ resources to improve the quality of the lives of citizens. Diverse kinds of control signals from massive systems and devices such as adaptive traffic light systems in smart cities can be collected and utilized. Unfortunately, it is difficult to collect a massive dataset of control signals as doing so in the real-world requires significant effort and time. This paper proposes a deep generative model which integrates a long short-term memory model with generative adversarial network (LSTM-GAN) to generate agent control signals based on the words extracted from newspaper articles to solve the problem of collecting massive signals. The discriminatory network in the LSTM-GAN takes continuous word embedding vectors as inputs generated by a pre-trained Word2Vec model. The agent control signals of sequential actions are simultaneously predicted by the LSTM-GAN in real time. Specifically, to collect the training data of smart city simulations, the LSTM-GAN is trained based on the Corpus of Contemporary American English (COCA) newspaper dataset, which contains 5,317,731 sentences, for a total of 93,626,203 word tokens, from written texts. To verify the proposed method, agent control signals were generated and validated. In the training of the LSTM-GAN, the accuracy of the discriminator converged to 50%. In addition, the losses of the discriminator and the generator converged from 4527.04 and 4527.94 to 2.97 and 1.87, respectively.

Funder

The Ministry of Education of the Republic of Korea and the National Research Foundation of Korea

Publisher

Springer Science and Business Media LLC

Subject

General Computer Science

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3