Intelligent smart home energy efficiency model using artificial TensorFlow engine

Author:

Jo Hana,Yoon Yong Ik

Abstract

AbstractSmart home and IoT-related technologies are developing rapidly, and various smart devices are being developed to help users enjoy a more comfortable lifestyle. However, the existing smart homes are limited by a scarcity of operating systems to integrate the devices that constitute the smart home environment. This is because these devices use independent IoT platforms developed by the brand or company that developed the device, and they produce these devices based on self-service modules. A smart home that lacks an integrated operating system becomes an organizational hassle because the user must then manage each device individually. Furthermore, this leads to problems such as excessive traffic on the smart home network and energy wastage. To overcome these problems, it is necessary to build an integrated management system that connects IoT devices to each other. To efficiently manage IoT, we propose three intelligent models as IoT platform application services for a smart home. The three models are intelligence awareness target as a service (IAT), intelligence energy efficiency as a service (IE2S), and intelligence service TAS (IST). IAT manages the “things” stage. IAT uses intelligent learning to acquire a situational awareness of the data values generated by things (sensors) to collect data according to the environment. IE2S performs the role of a server (IoT platform) and processes the data collected by IAT. The server uses Mobius, which is an open-source platform that follows international standards, and an artificial TensorFlow engine is used for data learning. IE2S analyzes and learns the users’ usage patterns to help provide service automatically. IST helps to provide, control, and manage the service stage. These three intelligent models allow the IoT devices in a smart home to mutually cooperate with each other. In addition, these intelligent models can resolve the problems of network congestion and energy wastage by reducing unnecessary network tasks to systematically use energy according to the IoT usage patterns in the smart home.

Publisher

Springer Science and Business Media LLC

Subject

General Computer Science

Reference41 articles.

1. Gubbi J et al (2013) Internet of things (IoT): a vision, architectural elements, and future directions. Future Gener Comput Syst 29(7):1645–1660

2. Moon SY, Park JH (2016) Efficient hardware-based code convertor of a quantum computer. J Converg 7:1–9

3. Huh JH (2017) PLC-based design of monitoring system for ICT-integrated vertical fish farm. Human-centric Comput Inf Sci 7(1):1–19

4. Wu M et al (2010) Research on the architecture of Internet of things. In: 3rd international conference on advanced computer theory and engineering (ICACTE), vol 5. 2010. New York, IEEE

5. Koshizuka N, Sakamura K (2010) Ubiquitous ID: standards for ubiquitous computing and the internet of things. IEEE Pervasive Comput 9(4):98–101

Cited by 41 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3