Converting PROMIS®-29 v2.0 profile data to SF-36 physical and mental component summary scores in patients with cardiovascular disorders

Author:

Liegl Gregor,H. Fischer Felix,N. Martin Carl,Rönnefarth Maria,Blumrich Annelie,Ahmadi Michael,Boldt Leif-Hendrik,Eckardt Kai-Uwe,Endres Matthias,Edelmann Frank,Gerhardt Holger,Grittner Ulrike,Haghikia Arash,Hübner Norbert,Landmesser Ulf,Leistner David,Mai Knut,Kollmus-Heege Jil,N. Müller Dominik,H. Nolte Christian,K. Piper Sophie,M. Schmidt-Ott Kai,Pischon Tobias,Rattan Simrit,Rohrpasser-Napierkowski Ira,Schönrath Katharina,Schulz-Menger Jeanette,Schweizerhof Oliver,Spranger Joachim,E. Weber Joachim,Witzenrath Martin,Schmidt Sein,Rose Matthias

Abstract

Abstract Background Health-related quality of life (HRQL) has become an important outcome parameter in cardiology. The MOS 36-ltem Short-Form Health Survey (SF-36) and the PROMIS-29 are two widely used generic measures providing composite HRQL scores. The domains of the SF-36, a well-established instrument utilized for several decades, can be aggregated to physical (PCS) and mental (MCS) component summary scores. Alternative scoring algorithms for correlated component scores (PCSc and MCSc) have also been suggested. The PROMIS-29 is a newer but increasingly used HRQL measure. Analogous to the SF-36, physical and mental health summary scores can be derived from PROMIS-29 domain scores, based on a correlated factor solution. So far, scores from the PROMIS-29 are not directly comparable to SF-36 results, complicating the aggregation of research findings. Thus, our aim was to provide algorithms to convert PROMIS-29 data to well-established SF-36 component summary scores. Methods Data from n = 662 participants of the Berlin Long-term Observation of Vascular Events (BeLOVE) study were used to estimate linear regression models with either PROMIS-29 domain scores or aggregated PROMIS-29 physical/mental health summary scores as predictors and SF-36 physical/mental component summary scores as outcomes. Data from a subsequent assessment point (n = 259) were used to evaluate the agreement between empirical and predicted SF-36 scores. Results PROMIS-29 domain scores as well as PROMIS-29 health summary scores showed high predictive value for PCS, PCSc, and MCSc (R2 ≥ 70%), and moderate predictive value for MCS (R2 = 57% and R2 = 40%, respectively). After applying the regression coefficients to new data, empirical and predicted SF-36 component summary scores were highly correlated (r > 0.8) for most models. Mean differences between empirical and predicted scores were negligible (|SMD|<0.1). Conclusions This study provides easy-to-apply algorithms to convert PROMIS-29 data to well-established SF-36 physical and mental component summary scores in a cardiovascular population. Applied to new data, the agreement between empirical and predicted SF-36 scores was high. However, for SF-36 mental component summary scores, considerably better predictions were found under the correlated (MCSc) than under the original factor model (MCS). Additionally, as a pertinent byproduct, our study confirmed construct validity of the relatively new PROMIS-29 health summary scores in cardiology patients.

Funder

Charité - Universitätsmedizin Berlin

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3