Author:
Wang Cheng,Saha Sourish,Rose Melanie J,Davenport Paul W,Bolser Donald C
Abstract
Abstract
The purpose of this study was to identify the spatiotemporal determinants of the cough motor pattern. We speculated that the spatial and temporal characteristics of the cough motor pattern would be regulated separately. Electromyograms (EMG) of abdominal muscles (ABD, rectus abdominis or transversus abdominis), and parasternal muscles (PS) were recorded in anesthetized cats. Repetitive coughing was produced by mechanical stimulation of the lumen of the intrathoracic trachea. Cough inspiratory (CTI) and expiratory (CTE) durations were obtained from the PS EMG. The ABD EMG burst was confined to the early part of CTE and was followed by a quiescent period of varying duration. As such, CTE was divided into two segments with CTE1 defined as the duration of the ABD EMG burst and CTE2 defined as the period of little or no EMG activity in the ABD EMG. Total cough cycle duration (CTTOT) was strongly correlated with CTE2 (r2>0.8), weakly correlated with CTI (r2<0.3), and not correlated with CTE1 (r2<0.2). There was no significant relationship between CTI and CTE1 or CTE2. The magnitudes of inspiratory and expiratory motor drive during cough were only weakly correlated with each other (r2<0.36) and were not correlated with the duration of any phase of cough. The results support: a) separate regulation of CTI and CTE, b) two distinct subphases of CTE (CTE1 and CTE2), c) the duration of CTE2 is a primary determinant of CTTOT, and d) separate regulation of the magnitude and temporal features of the cough motor pattern.
Publisher
Springer Science and Business Media LLC
Subject
Pulmonary and Respiratory Medicine,Otorhinolaryngology
Reference31 articles.
1. Leith DE, Butler JP, Sheddon SL, Brain JD: In Handbook of Physiology The Respiratory System, V III Mechanics of Breathing, Part I. Cough. 1986, Bethesda MD: American Physiological Society, 315-336.
2. Shannon R, Baekey DM, Morris KF, Lindsey BG: Ventrolateral medullary respiratory network and a model of cough motor pattern generation. J Appl Physiol. 1998, 84: 2020-2035.
3. Clark FJ, von Euler C: On the regulation of depth and rate of breathing. J Physiol. 1972, 222: 267-295.
4. Romaniuk JR, Kowalski KE, Dick TE: The role of pulmonary stretch receptor activation during cough in dogs. Acta Neurobiol Exp (Wars). 1997, 57: 21-29.
5. Bolser DC, Davenport PW: Volume-timing relationships during cough and resistive loading in the cat. J Appl Physiol. 2000, 89: 785-790.
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献