A novel fragmented anode biofilm microbial fuel cell (FAB–MFC) integrated system for domestic wastewater treatment and bioelectricity generation

Author:

Atnafu TesfalemORCID,Leta Seyoum

Abstract

Abstract Background The critical MFC design challenge is to increase anode surface area. A novel FAB–MFC integrated system was developed and evaluated for domestic wastewater treatment. It was operated in fed-batch flow mode at 1–3 days of HRT with 755 mg/L CODIN and 0.76 kg-COD/m3/day. The study includes anaerobic-MFC and aerobic-MFC integrated systems. Microbial electrode jacket dish (MEJ-dish) with hybrid dimension (HD) was invented, first time to authors’ knowledge, to boost anode biofilm growth. The treatment system with MEJ+ (FAB) and MEJ− (MFC) anode are called FAB–MFC and MFC, respectively. Results Fragmented variable anode biofilm thickness was observed in FAB than MFC. The FAB–MFC (FAB+) simple technique increases the anode biofilm thickness by ~ 5 times MFC. Due to HD the anode biofilm was fragmented in FAB+ system than MFC. At the end of each treatment cycle, voltage drops. All FAB+ integrated systems reduced voltage drop relative to MFC. FAB reduces voltage drops better than MFC in anaerobic-MFC from 6 to 20 mV and aerobic-MFC from 35–47 mV at 1 kΩ external load. The highest power density was achieved by FAB in anaerobic-MFC (FAB = 104 mW/m2, MFC = 98 mW/m2) and aerobic-MFC integrated system (FAB = 59 mW/m2, MFC = 42 mW/m2). Conclusions The ∆COD and CE between FAB and MFC could not be concluded because both setups were inserted in the same reactor. The integrated system COD removal (78–97%) was higher than the solitary MFC treatment (68–78%). This study findings support the FAB+ integrated system could be applied for real applications and improve performance. However, it might depend on influent COD, the microbial nature, and ∆COD in FAB+ and MFC, which requires further study. Graphic abstract

Publisher

Springer Science and Business Media LLC

Subject

Renewable Energy, Sustainability and the Environment,Biomedical Engineering,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3