Cytochrome C catalyzed oxygen tolerant atom-transfer radical polymerization

Author:

Xie Peng-Cheng,Guo Xue-Qing,Yang Fu-Qiao,Xu Nuo,Chen Yuan-Yuan,Wang Xing-Qiang,Wang Hongcheng,Yong Yang-ChunORCID

Abstract

AbstractAtom-transfer radical polymerization (ATRP) is a well-known technique for controlled polymer synthesis. However, the ATRP usually employed toxic heavy metal ionas as the catalyst and was susceptible to molecular oxygen, which made it should be conducted under strictly anoxic condition. Conducting ATRP under ambient and biocompatible conditions is the major challenge. In this study, cytochrome C was explored as an efficient biocatalyst for ATRP under biocompatible conditions. The cytochrome C catalyzed ATRP showed a relatively low polymer dispersity index of 1.19. More interestingly, the cytochrome C catalyzed ATRP showed superior oxygen resistance as it could be performed under aerobic conditions with high dissolved oxygen level. Further analysis suggested that the Fe(II) embed in the cytochrome C might serve as the catalytic center and methyl radical was responsible for the ATRP catalysis. This work explored new biocompatible catalyst for aerobic ATRP, which might open new dimension for practical ATRP and application of cytochrome C protein. Graphical Abstract

Funder

National Basic Research Program of China

National Natural Science Foundation of China

a Project of Faculty of Agricultural Equipment of Jiangsu University

Publisher

Springer Science and Business Media LLC

Subject

Renewable Energy, Sustainability and the Environment,Biomedical Engineering,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3