The chitosan/carboxymethyl cellulose/montmorillonite scaffolds incorporated with epigallocatechin-3-gallate-loaded chitosan microspheres for promoting osteogenesis of human umbilical cord-derived mesenchymal stem cell

Author:

Wang Jin,He Wubo,Tan Wen-Song,Cai HaiboORCID

Abstract

AbstractEpigallocatechin-3-gallate (EGCG) is a plant-derived flavonoid compound with the ability to promote the differentiation of human bone marrow-derived mesenchymal stem cells (MSCs) into osteoblasts. However, the effect of EGCG on the osteogenic differentiation of the human umbilical cord-derived mesenchymal stem cells (HUMSCs) is rarely studied. Therefore, in this study, the osteogenic effects of EGCG are studied in the HUMSCs by detecting cell proliferation, alkaline phosphatase (ALP) activity, calcium deposition and the expression of relevant osteogenic markers. The results showed that EGCG can promote the proliferation and osteogenic differentiation of the HUMSCs in vitro at a concentration of 2.5–5.0 μM. Unfortunately, the EGCG is easily metabolized by cells during cell culture, which reduces its bioavailability. Therefore, in this paper, EGCG-loaded microspheres (ECM) were prepared and embedded in chitosan/carboxymethyl cellulose/montmorillonite (CS/CMC/MMT) scaffolds to form CS/CMC/MMT-ECM scaffolds for improving the bioavailability of EGCG. The HUMSCs were cultured on CS/CMC/MMT-ECM scaffolds to induce osteogenic differentiation. The results showed that the CS/CMC/MMT-ECM scaffold continuously released EGCG for up to 22 days. In addition, CS/CMC/MMT-ECM scaffolds can promote osteoblast differentiation. Taken together, the present study suggested that entrainment of ECM into CS/CMC/MMT scaffolds was a prospective scheme for promotion osteogenic differentiation of the HUMSCs. Graphical Abstract

Publisher

Springer Science and Business Media LLC

Subject

Renewable Energy, Sustainability and the Environment,Biomedical Engineering,Food Science,Biotechnology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3