Abstract
AbstractVibrio natriegens is a promising industrial chassis with a super-fast growth rate and high substrate uptake rates. V. natriegens was previously engineered to produce 1,3-propanediol (1,3-PDO) from glycerol by overexpressing the corresponding genes in a plasmid. However, antibiotic selection pressure for plasmid stability was not satisfactory and plasmid loss resulted in reduced productivity of the bioprocess. In this study, we developed an antibiotic-free plasmid stabilization system for V. natriegens. The system was achieved by shifting the glpD gene, one of the essential genes for glycerol degradation, from the chromosome to plasmid. With this system, engineered V. natriegens can stably maintain a large expression plasmid during the whole fed-batch fermentation and accumulated 69.5 g/L 1,3-PDO in 24 h, which was 23% higher than that based on antibiotic selection system. This system was also applied to engineering V. natriegens for the production of 3-hydroxypropionate (3-HP), enabling the engineered strain to accumulate 64.5 g/L 3-HP in 24 h, which was 30% higher than that based on antibiotic system. Overall, the developed strategy could be useful for engineering V. natriegens as a platform for the production of value-added chemicals from glycerol.
Graphic Abstract
Funder
Key Technologies Research and Development Program
National Natural Science Foundation of China
Publisher
Springer Science and Business Media LLC
Subject
Renewable Energy, Sustainability and the Environment,Biomedical Engineering,Food Science,Biotechnology
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献