Abstract
AbstractBikaverin is a fungal red pigment that presents antimicrobial and antitumor activities. Therefore, this substance could be used as an alternative additive in the food and pharmaceutical industries. The aim of this work was to use response surface methodology to optimize the fermentation conditions and maximize the production of bikaverin in shake flasks. The variables investigated were agitation speed (71–289 rpm), temperature (21–35 °C), and substrate (rice) concentration in the culture medium (16.4–83.6 g/L). The agitation speed had a positive effect on red pigment production, while substrate concentration and temperature had the opposite effect. Maximum bikaverin production was predicted to occur using 289 rpm, 24.3 °C, and 16.4 g/L rice concentration. Experimental validation using 289 rpm, 28 °C, and 20 g/L rice concentration was 6.2% higher than predicted by the model. The present investigation was important for defining the best conditions for the production of bikaverin.
Funder
Conselho Nacional de Desenvolvimento Científico e Tecnológico
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
Publisher
Springer Science and Business Media LLC
Subject
Renewable Energy, Sustainability and the Environment,Biomedical Engineering,Food Science,Biotechnology
Reference42 articles.
1. Ahmad MN, Holland CR, Mckay G (1994) Mass transfer studies in batch fermentation: mixing characteristics. J Food Eng 23:145–158. https://doi.org/10.1016/0260-8774(94)90083-3
2. Akilandeswari P, Pradeep BV (2016) Exploration of industrially important pigments from soil fungi. Appl Microbiol Biotechnol 100:1631–1643. https://doi.org/10.1007/s00253-015-7231-8
3. Avalos J, Fernández-Martín R, Prado MM et al (1999) Biosíntesis de giberelinas, bikaverina y carotenoides en Gibberella fujikuroi. In: López C, Alonso JE (eds) Biotecnología y aplicaciones de microorganismos pigmentados. Universidade da Coruña, Coruña, pp 169–188
4. Balan J, Fuska J, Kuhr I, Kuhrová V (1970) Bikaverin, an antibiotic from Gibberella fujikuroi, effective against Leishmania brasiliensis. Folia Microbiol (Praha) 15:479–484. https://doi.org/10.1007/BF02880192
5. Bell AA, Wheeler MH, Liu J et al (2003) United States department of agriculture—agricultural research service studies on polyketide toxins of Fusarium oxysporum f sp vasinfectum: potential targets for disease control. Pest Manag Sci 59:736–747. https://doi.org/10.1002/ps.713
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献