Digital technology dilemma: on unlocking the soil quality index conundrum

Author:

Obade Vincent de Paul,Gaya Charles

Abstract

AbstractKnowledge of the interactions between soil systems, management practices, and climatic extremes are critical for prescription-based sustainable practices that reduce environmental pollution/footprints, disruption of food supply chains, food contamination, and thus improve socio-economic wellbeing. Soil quality status and dynamics under climate change present both a hazard which may not be remedied by simply adding chemicals or improved by crop varieties, and an opportunity (e.g., by indicating impact of a shift in land use) although the specifics remain debatable. This entry not only revisits the science of soil quality determination but also explicates on intricacies of monitoring using big data generated continuously and integrated using the “internet of things.” Indeed, relaying credible soil quality information especially for heterogeneous soils at field scale is constrained by challenges ranging from data artifacts and acquisition timing differences, vague baselines, validation challenges, scarcity of robust standard algorithms, and decision support tools. With the advent of digital technology, modern communication networks, and advancement in variable rate technologies (VRT), a new era has dawned for developing automated scalable and synthesized soil quality metrics. However, before digital technology becomes the routine tool for soil quality sensing and monitoring, there is need to understand the issues and concerns. This contribution not only exemplifies a unique application of digital technology to detect residue cover but also deliberates on the following questions: (1) is digital agriculture the missing link for integrating, understanding the interconnectivity, and ascertaining the provenance between soil quality, agronomic production, environmental health, and climate dynamics? and (2) what are the technological gaps?

Publisher

Springer Science and Business Media LLC

Subject

Renewable Energy, Sustainability and the Environment,Biomedical Engineering,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3