Chemical-free recovery of crude protein from livestock manure digestate solid by thermal hydrolysis

Author:

Tasaki KenORCID

Abstract

AbstractProtein is becoming an increasingly important resource for a variety of commercial applications. Yet, a large volume of protein is being wasted. Notably, livestock manure solids have a significant content of protein which is not only underutilized, but prone to runoff and eventual breakdown to reactive nitrogen compounds, contributing to eutrophication. It would be desirable to remove protein before it causes environmental hazards and then convert it to value-added commercial applications. We have developed a novel thermal hydrolysis process (THP) to extract crude protein from livestock manure solid, or manure digestate solid (MDS) in particular, without the use of any chemical. We demonstrate the versatility of our new process to control the molecular weight (MW) distribution of the extracted protein hydrolysate (PH). The antioxidant activity of the crude protein hydrolysate (CPH) has been examined through Oxygen Radical Absorbance Capacity Assay. The results have shown that our CPH had its antioxidant capacity against the peroxyl radical similar to that of vitamin E and exhibited almost 7 times as strong inhibition against the hydroxyl radical as vitamin E. We also evaluated the nutritional value of our PH by analyzing its amino acid composition and the MW distribution through amino acid analysis, SDS-PAGE, and MALDI-TOF mass spectroscopy. The characterizations have revealed that the PH recovered from MDS had 2.5 times as much essential amino acids as soybean meal on dry matter basis, with the MW distribution ranging from over a 100 Da to 100 KDa. Finally, the protein powder was prepared from the extracted CPH solution and its composition was analyzed.

Publisher

Springer Science and Business Media LLC

Subject

Renewable Energy, Sustainability and the Environment,Biomedical Engineering,Food Science,Biotechnology

Reference59 articles.

1. AAFCO’s Laboratory methods and services committee fiber best practices working group (2017) Critical factors in determining fiber in feeds and forages; Champaign, IL, January

2. Adhikari B, Dhungana SK, Ali MW, Adhikari A, Kim ID, Shin DH (2019) Antioxidant activities, polyphenol, flavonoid, and amino acid contents in peanut shell. J Saudi Soc Agric Sci 18:437–442

3. Antunes M, Fernandes AN, Crespo JS, Giovanela M (2007) Thermal degradation of humic acids from aquatic environments. Anais do 9° Congresso Brasileiro de Polímeros, Corpus ID: 229321856

4. Banaszkiewicz T (2011) Nutritional value of soybean meal. In: El-Shemy H (ed) Soybean and nutrition. IntechOpen. https://doi.org/10.5772/23306

5. Baskar G, Kalavathy G, Aiswarya R, Selvakumari IA (2019) Advances in bio-oil extraction from nonedible oil seeds and algal biomass. In: Azad K (ed) Advances in eco-fuels for a sustainable environment, Woodhead publishing series in energy. Elsevier, Amsterdam, pp 187–210

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3