A novel scale-up strategy for cultivation of BHK-21 cells based on similar hydrodynamic environments in the bioreactors

Author:

Teng Xiaonuo,Li Chao,Yi Xiaoping,Zhuang Yingping

Abstract

AbstractThe scale-up of animal cell cultivation is important but remains complex and challenging. In the present study, we propose a novel scale-up strategy for baby hamster Syrian kidney-21 (BHK-21) cell cultivation based on similar hydrodynamic environments. The hydrodynamic characteristics of the different scale bioreactors were determined by computational fluid dynamics (CFD) and further correlated with the agitation speed. The optimal hydrodynamic environment for cell cultivation and vaccine production was determined from the cultivation experiments of BHK-21 cells in 5-L laboratory-scale bioreactors equipped with different impellers at various agitation speeds. BHK-21 cell cultivation was scaled up from 5-L to 42-, 350-, and 1000-L bioreactors by adjusting the agitation speed to make the hydrodynamic features similar to those in the 5-L bioreactor, especially for the shear rate in the impeller zone (γimp) and energy dissipation rate in the tank bulk zone (εtan). The maximum cell density and cell aggregation rate in these scaled-up bioreactors were in the range of 4.6 × 106 ~ 4.8 × 106 cells/mL and 16 ~ 20%, which are comparable to or even better than those observed in the 5-L bioreactor (maximum cell density 4.8 × 106 cells/mL, cell aggregation rate 21%). The maximum virus titer of 108.0 LD50/mL achieved in the 1000-L bioreactor was close to 108.3 LD50/mL that obtained in the 5-L bioreactor. Hence, the scale-up strategy proposed in this study is feasible and can efficiently facilitate the scale-up processes of animal cell cultivation.

Funder

National High-tech Research and Development Program

Publisher

Springer Science and Business Media LLC

Subject

Renewable Energy, Sustainability and the Environment,Biomedical Engineering,Food Science,Biotechnology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Animal cell culture in vaccine production;Bioreactor Design Concepts for Viral Vaccine Production;2024

2. Advances and applications of capillary electromigration methods in the analysis of therapeutic and diagnostic recombinant proteins – A Review;Journal of Pharmaceutical and Biomedical Analysis;2023-01

3. Mechanistic modeling of viral particle production;Biotechnology and Bioengineering;2022-12-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3