Reconstruction the feedback regulation of amino acid metabolism to develop a non-auxotrophic l-threonine producing Corynebacterium glutamicum

Author:

Liu Jianhang,Liu Jiao,Li Jiajun,Zhao Xiaojia,Sun Guannan,Qiao Qianqian,Shi Tuo,Che Bin,Chen Jiuzhou,Zhuang Qianqian,Wang Yu,Sun Jibin,Zhu Deqiang,Zheng PingORCID

Abstract

Abstractl-Threonine is an important feed additive with the third largest market size among the amino acids produced by microbial fermentation. The GRAS (generally regarded as safe) industrial workhorse Corynebacterium glutamicum is an attractive chassis for l-threonine production. However, the present l-threonine production in C. glutamicum cannot meet the requirement of industrialization due to the relatively low production level of l-threonine and the accumulation of large amounts of by-products (such as l-lysine, l-isoleucine, and glycine). Herein, to enhance the l-threonine biosynthesis in C. glutamicum, releasing the aspartate kinase (LysC) and homoserine dehydrogenase (Hom) from feedback inhibition by l-lysine and l-threonine, respectively, and overexpressing four flux-control genes were performed. Next, to reduce the formation of by-products l-lysine and l-isoleucine without the cause of an auxotrophic phenotype, the feedback regulation of dihydrodipicolinate synthase (DapA) and threonine dehydratase (IlvA) was strengthened by replacing the native enzymes with heterologous analogues with more sensitive feedback inhibition by l-lysine and l-isoleucine, respectively. The resulting strain maintained the capability of synthesizing enough amounts of l-lysine and l-isoleucine for cell biomass formation but exhibited almost no extracellular accumulation of these two amino acids. To further enhance l-threonine production and reduce the by-product glycine, l-threonine exporter and homoserine kinase were overexpressed. Finally, the rationally engineered non-auxotrophic strain ZcglT9 produced 67.63 g/L (17.2% higher) l-threonine with a productivity of 1.20 g/L/h (108.0% higher) in fed-batch fermentation, along with significantly reduced by-product accumulation, representing the record for l-threonine production in C. glutamicum. In this study, we developed a strategy of reconstructing the feedback regulation of amino acid metabolism and successfully applied this strategy to de novo construct a non-auxotrophic l-threonine producing C. glutamicum. The main end by-products including l-lysine, l-isoleucine, and glycine were almost eliminated in fed-batch fermentation of the engineered C. glutamicum strain. This strategy can also be used for engineering producing strains for other amino acids and derivatives.

Funder

the National Key Research and Development Program of China

Office of Innovation and Improvement

Innovative Research Group Project of the National Natural Science Foundation of China

Key Technologies Research and Development Program of Anhui Province

Youth Innovation Promotion Association of the Chinese Academy of Sciences

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3