Abstract
Abstractl-Threonine is an important feed additive with the third largest market size among the amino acids produced by microbial fermentation. The GRAS (generally regarded as safe) industrial workhorse Corynebacterium glutamicum is an attractive chassis for l-threonine production. However, the present l-threonine production in C. glutamicum cannot meet the requirement of industrialization due to the relatively low production level of l-threonine and the accumulation of large amounts of by-products (such as l-lysine, l-isoleucine, and glycine). Herein, to enhance the l-threonine biosynthesis in C. glutamicum, releasing the aspartate kinase (LysC) and homoserine dehydrogenase (Hom) from feedback inhibition by l-lysine and l-threonine, respectively, and overexpressing four flux-control genes were performed. Next, to reduce the formation of by-products l-lysine and l-isoleucine without the cause of an auxotrophic phenotype, the feedback regulation of dihydrodipicolinate synthase (DapA) and threonine dehydratase (IlvA) was strengthened by replacing the native enzymes with heterologous analogues with more sensitive feedback inhibition by l-lysine and l-isoleucine, respectively. The resulting strain maintained the capability of synthesizing enough amounts of l-lysine and l-isoleucine for cell biomass formation but exhibited almost no extracellular accumulation of these two amino acids. To further enhance l-threonine production and reduce the by-product glycine, l-threonine exporter and homoserine kinase were overexpressed. Finally, the rationally engineered non-auxotrophic strain ZcglT9 produced 67.63 g/L (17.2% higher) l-threonine with a productivity of 1.20 g/L/h (108.0% higher) in fed-batch fermentation, along with significantly reduced by-product accumulation, representing the record for l-threonine production in C. glutamicum. In this study, we developed a strategy of reconstructing the feedback regulation of amino acid metabolism and successfully applied this strategy to de novo construct a non-auxotrophic l-threonine producing C. glutamicum. The main end by-products including l-lysine, l-isoleucine, and glycine were almost eliminated in fed-batch fermentation of the engineered C. glutamicum strain. This strategy can also be used for engineering producing strains for other amino acids and derivatives.
Funder
the National Key Research and Development Program of China
Office of Innovation and Improvement
Innovative Research Group Project of the National Natural Science Foundation of China
Key Technologies Research and Development Program of Anhui Province
Youth Innovation Promotion Association of the Chinese Academy of Sciences
Publisher
Springer Science and Business Media LLC
Reference42 articles.
1. Chen L, Chen Z, Zheng P, Sun J, Zeng AP (2013) Study and reengineering of the binding sites and allosteric regulation of biosynthetic threonine deaminase by isoleucine and valine in Escherichia coli. Appl Microbiol Biotechnol 97:2939–2949
2. Diesveld R, Tietze N, Fürst O, Reth A, Bathe B, Sahm H, Eggeling L (2009) Activity of exporters of Escherichia coli in Corynebacterium glutamicum, and their use to increase L-threonine production. J Mol Microbiol Biotechnol 16:198–207
3. Dong X, Quinn PJ, Wang X (2011) Metabolic engineering of Escherichia coli and Corynebacterium glutamicum for the production of l-threonine. Biotechnol Adv 29:11–23
4. Dong X, Zhao Y, Hu J, Li Y, Wang X (2016) Attenuating l-lysine production by deletion of ddh and lysE and their effect on l-threonine and l-isoleucine production in Corynebacterium glutamicum. Enzyme Microb Technol 93–94:70–78
5. Forget RS, Martin JE, Cote RH (1993) A centrifugal separation procedure detects moderate affinity cGMP binding sites in membrane-associated proteins and permeabilized cells. Anal Biochem 215:159–161