Increased paclitaxel recovery from Taxus baccata vascular stem cells using novel in situ product recovery approaches

Author:

Santoyo-Garcia Jorge H.,Valdivia-Cabrera Marissa,Ochoa-Villarreal Marisol,Casasola-Zamora Samuel,Ripoll Magdalena,Escrich Ainoa,Moyano Elisabeth,Betancor Lorena,Halliday Karen J.,Loake Gary J.,Rios-Solis LeonardoORCID

Abstract

AbstractIn this study, several approaches were tested to optimise the production and recovery of the widely used anticancer drug Taxol® (paclitaxel) from culturable vascular stem cells (VSCs) of Taxus baccata, which is currently used as a successful cell line for paclitaxel production. An in situ product recovery (ISPR) technique was employed, which involved combining three commercial macro-porous resin beads (HP-20, XAD7HP and HP-2MG) with batch and semi-continuous cultivations of the T. baccata VSCs after adding methyl jasmonate (Me-JA) as an elicitor. The optimal resin combination resulted in 234 ± 23 mg of paclitaxel per kg of fresh-weight cells, indicating a 13-fold improved yield compared to the control (with no resins) in batch cultivation. This resin treatment was further studied to evaluate the resins’ removal capacity of reactive oxygen species (ROS), which can cause poor cell growth or reduce product synthesis. It was observed that the ISPR cultivations had fourfold less intracellular ROS concentration than that of the control; thus, a reduced ROS concentration established by the resin contributed to increased paclitaxel yield, contrary to previous studies. These paclitaxel yields are the highest reported to date using VSCs, and this scalable production method could be applied for a diverse range of similar compounds utilising plant cell culture. Graphical Abstract

Funder

Consejo Nacional de Ciencia y Tecnología

Agencia Nacional de Investigación e Innovación

Universitat Pompeu Fabra

Royal Society

The British Council

Engineering and Physical Sciences Research Council

Publisher

Springer Science and Business Media LLC

Subject

Renewable Energy, Sustainability and the Environment,Biomedical Engineering,Food Science,Biotechnology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3