Abstract
AbstractExtensive decoration of backbones is a major factor resulting in resistance of enzymatic conversion in hemicellulose and other branched polysaccharides. Employing debranching enzymes is the main strategy to overcome this kind of recalcitrance at present. A carbohydrate-binding module (CBM) is a contiguous amino acid sequence that can promote the binding of enzymes to various carbohydrates, thereby facilitating enzymatic hydrolysis. According to previous studies, CBMs can be classified into four types based on their preference in ligand type, where Type III and IV CBMs prefer to branched polysaccharides than the linear and thus are able to specifically enhance the hydrolysis of substrates containing side chains. With a role in dominating the hydrolysis of branched substrates, Type III and IV CBMs could represent a non-catalytic approach in overcoming side-chain recalcitrance.
Funder
National Natural Science Foundation of China
The Natural Science Foundation of the Jiangsu Higher Education Institutions of China
Natural Science Foundation of Jiangsu Province
Publisher
Springer Science and Business Media LLC
Subject
Renewable Energy, Sustainability and the Environment,Biomedical Engineering,Food Science,Biotechnology
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献