Author:
Zhang Qiang,Chen Yong,Hong Ming,Gao Yang,Chu Ju,Zhuang Ying-ping,Zhang Si-liang
Abstract
Abstract
Background
Erythromycin production often has concern with the consumption rate of amino nitrogen and phosphate, especially in the early fermentation phase. The dynamic regulation of nitrogen and phosphorus was put forward based on the comprehensive analysis of the contents of phosphorus and nitrogen in different nitrogen sources as well as the relations between nitrogen consumption and phosphorus consumption.
Results
Firstly, the unstable nitrogen source, corn steep liquor, was substituted with the stable nitrogen source, yeast powder, with little effects on erythromycin production. Secondly, feeding phosphate in the early fermentation stage accelerated the consumption of amino nitrogen and ultimately increased erythromycin production by approximately 24% as compared with the control (without feeding potassium dihydrogen phosphate). Thirdly, feeding phosphate strategy successfully applied to 500 L fermenter with the final erythromycin concentration of 11839 U/mL, which was 17.3% higher than that of the control. Finally, the application of condensed soy protein (a cheap nitrogen source with low phosphorus content) combined with phosphate feed strategy led to a 13.0% increase of the erythromycin production as compared with the control (condensed soy protein, without feeding potassium dihydrogen phosphate).
Conclusions
Appropriately feeding phosphate combined with rational nitrogen regulation in the early fermentation phase was an effective way to improve erythromycin production.
Publisher
Springer Science and Business Media LLC
Subject
Renewable Energy, Sustainability and the Environment,Biomedical Engineering,Food Science,Biotechnology
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献