Author:
Guo Feng,Wu Min,Zhang Shangjie,Feng Yifan,Jiang Yujia,Jiang Wankui,Xin Fengxue,Zhang Wenming,Jiang Min
Abstract
AbstractSynthetic biology has boosted the rapid development on using non-methylotrophy as chassis for value added chemicals production from one-carbon feedstocks, such as methanol and formic acid. The one-carbon dissimilation pathway can provide more NADH than monosaccharides including glucose, which is conducive for reductive chemicals production, such as succinic acid. In this study, the one-carbon dissimilation pathway was introduced in E. coli Suc260 to enhance the succinic acid production capability. Through the rational construction of methanol dissimilation pathway, the succinic acid yield was increased from 0.91 to 0.95 g/g with methanol and sodium formate as auxiliary substrates in anaerobic fed-batch fermentation. Furthermore, the metabolic flux of by-product pyruvate was redirected to succinic acid together with the CO2 fixation. Finally, through the immobilization on a specially designed glycosylated membrane, E. coli cells are more resistant to adverse environments, and the final yield of succinic acid was improved to 0.98 g/g. This study proved the feasibility of endowing producers with methanol dissimilation pathway to enhance the production of reductive metabolites.
Graphical Abstract
Funder
National Key R&D Program of China
National Natural Science Foundation of China
Natural Science Foundation of Jiangsu Province
Publisher
Springer Science and Business Media LLC
Subject
Renewable Energy, Sustainability and the Environment,Biomedical Engineering,Food Science,Biotechnology
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献