A comparison of different oxidative pretreatments on polysaccharide hydrolyzability and cell wall structure for interpreting the greatly improved enzymatic digestibility of sugarcane bagasse by delignification

Author:

Han Yazhu,Bai Yuchen,Zhang Jingzhi,Liu Dehua,Zhao XuebingORCID

Abstract

AbstractIn order to confirm the contribution of delignification to the increase in lignocellulosic cellulose digestibility, several laboratory oxidative pretreatments under mild conditions, including alkaline-hydrogen peroxide (AP), two-step alkaline/peracetic acid (APAA) and sodium chlorite (SC) pretreatments were employed to achieve selective delignification of sugarcane bagasse and retained most of the hemicelluloses (xylan) in the pretreated solids. Four commercial cellulase cocktails were used to test the enzymatic hydrolyzability of pretreated substrates. Results revealed that delignification indeed could greatly improve the final (120 h) cellulose hydrolysis with relatively high final (120 h) glucan conversion (> 90%) by different cellulase cocktails even if the substrates still had a high hemicelluloses content. However, the xylan conversion seemed to be more greatly dependent on the pretreatments and cellulase cocktails used. AP and APAA pretreatments resulted in the disappearance of middle lamella and liberation of cellulose fibers with significant etching, deformation and fracture of cell wall structure. SC pretreatment greatly modified the sugar bagasse surface morphology to make the surface much coarser. The cell wall also underwent serious fracture and deformation with some middle lamella disappearing. However, no significant alteration on the structure of pure cellulose was observed by SC oxidative pretreatment of filter paper. Oxidative pretreatment might also modify lignin structure and surface properties thus greatly reducing the non-specific adsorption of enzymes. The obtained results strongly support the conclusion that delignification under mild pretreatment condition can be very helpful to improve the enzymatic hydrolysis of lignocellulosic cellulose by commercial cellulase cocktails even if the substrates has a high hemicelluloses content.

Funder

National Key R & D Program of China

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Renewable Energy, Sustainability and the Environment,Biomedical Engineering,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3