Harnessing the potential of pigeonpea and maize feedstock biochar for carbon sequestration, energy generation, and environmental sustainability

Author:

Kumar Nallagatla Vinod,Sawargaonkar GajananORCID,Rani C. Sudha,Pasumarthi Rajesh,Kale Santhosh,Prakash T. Ram,Triveni S.,Singh Ajay,Davala Moses Shyam,Khopade Rohan,Karthik Rayapati,Venkatesh Bathula,Chandra Mandapelli Sharath

Abstract

AbstractCrop residues in agriculture pose disposal challenges and contribute to air pollution when burned. This study aims to use pigeonpea and maize stalks to produce biochar at different pyrolysis temperatures. Biochar can serve in carbon sequestration, as a soil amendment, and as an alternative fuel source. Pyrolysis was conducted at 400, 500, and 600 °C to examine the effects on physicochemical properties, fuel, and energy related properties. Increase in temperatures resulted in decrease of biochar yield, volatile matter, and O/C and H/C atomic ratios, while ash content and essential nutrients increased. Yield was observed to be higher in pigeonpea stalks derived biochar compared to maize stalks derived biochar at same pyrolysis temperatures. The yields of pigeonpea stalks derived biochar at 400 °C, 500 °C, and 600 °C are 34, 33 and 29%, respectively, and the yields of maize biomass-derived biochar at 400 °C, 500 °C, and 600 °C are 29, 28, and 26%, respectively. The organic carbon content is found to be higher in the biochar samples prepared at 600 °C, i.e., 10.44%, and 10.39% for pigeonpea and maize-derived biochar, respectively. The essential elements of biochar were increased with an increase in pyrolysis temperature except nitrogen which is conversely related to temperature. The biochar obtained through pyrolysis at 400 °C demonstrated superior characteristics compared to biochar produced at other temperatures. It exhibited a higher biochar yield, with approximately 84.60% for pigeonpea and 64.85% for maize fixed carbon content. Additionally, the energy retention efficiency was higher, reaching 67.33% for pigeonpea and 42.70% for maize-derived biochar at a pyrolysis temperature of 400 °C. The fixed carbon recovery efficiency was also notable at around 200.44% for PPS and 142.37% for maize biochar which is higher compared to biochar produced at other temperatures. Furthermore, the higher heating value (HHV) was approximately 30.75 MJ kg−1 for both the biochars, indicating their suitability as alternative solid fuels. A significant CO2 reduction potential of 84 CO2 eq kg−1 and 55 CO2 eq kg−1 was observed for pigeonpea and maize biochar, respectively. Hence, biochar is a promising and effective option for carbon sequestration, offering environmental benefits. Graphical Abstract

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3