Abstract
Abstract
Background
There has been a greater call for greener and eco-friendly processes and bioproducts to meet the 2030’s core agenda on 17 global sustainable development goals. The challenge lies in incorporating systems thinking with a comprehensive worldview as a guiding principle to develop the economy, whilst taking cognisance of the need to safeguard the environment, and to embrace the socio-cultural diversity dimension as an equal component. Any discussion on climate change, destruction of eco-system and habitat for wildlife, poverty and starvation, and the spread of infectious diseases, must be addressed together with the emphasis on the development of cleaner energy, air and water, better management of resources and biodiversity, improved agro-practices for food production and distribution, and affordable health care, as the outcomes and key performance indicators to be evaluated. Strict regulation, monitoring and enforcement to minimize emission, pollution and wastage must also be put in place.
Conclusion
This review article focuses on the research and development efforts to achieve sustainable bioenergy production, environmental remediation, and transformation of agro-materials into value-added bioproducts through the integrated algal and oil palm biorefinery. Recent development in microalgal research with nanotechnology as anti-cancer and antimicrobial agents and for biopharmaceutical applications are discussed. The life-cycle analysis in the context of palm oil mill processes is evaluated. The way forward from this integrated biorefinery concept is to strive for inclusive development strategies, and to address the immediate and pressing problems facing the Planet and the People, whilst still reaping the Profit.
Publisher
Springer Science and Business Media LLC
Subject
Renewable Energy, Sustainability and the Environment,Biomedical Engineering,Food Science,Biotechnology
Reference281 articles.
1. Abd El Baky HH, El Baz FK, El Baroty GS, Asker MMS, Ibrahim EA (2014) Phospholipids of some marine microalgae: identification, antivirus, anticancer and antimicrobial bioactivities. Der Pharma Chem 6:9–18
2. Abdel-Hady H, El-sayed MM, Abdel-gawad MM, El-wakil EA, Abdel-Hameed ES, Abdel-Lateef EE (2018) LC-ESI-MS analysis, antitumor and antioxidant activities of methanolic extract of Egyptian Allium kurrat. J Appl Pharm Sci 8:085–092
3. Abdullah MA, Ahmad A (2016) Integrated Algal Industrial Waste Treatment and Bioenergy Co- Generation. In: Sangeetha J, Thangadurai D, David M, Abdullah MA (Ed) Environ Biotechnol Biodegrad Bioremediation, Bioconversion Xenobiotics Sustain Dev CRC Press, Boco Raton: Florida. pp. 153–223.
4. Abdullah MA, Hussein HA (2020) Integrated algal biorefinery and palm oil milling for bioenergy, biomaterials and biopharmaceuticals. IOP Conf Ser Earth Environ Sci 463:012084. https://doi.org/10.1088/1755-1315/463/1/012084
5. Abdullah N, Sulaiman F, Gerhauser H (2011) Characterisation of oil palm empty fruit bunches for fuel application. J Phys Sci 22:1–24
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献