Degradation insight of organophosphate pesticide chlorpyrifos through novel intermediate 2,6-dihydroxypyridine by Arthrobacter sp. HM01

Author:

Mali Himanshu,Shah Chandni,Patel Darshan H.,Trivedi Ujjval,Subramanian R. B.ORCID

Abstract

AbstractOrganophosphates (OPs) are hazardous pesticides, but an indispensable part of modern agriculture; collaterally contaminating agricultural soil and surrounding water. They have raised serious food safety and environmental toxicity that adversely affect the terrestrial and aquatic ecosystems and therefore, it become essential to develop a rapid bioremediation technique for restoring the pristine environment. A newly OPs degrading Arthrobacter sp. HM01 was isolated from pesticide-contaminated soil and identified by a ribotyping (16S rRNA) method. Genus Arthrobacter has not been previously reported in chlorpyrifos (CP) degradation, which shows 99% CP (100 mg L−1) degradation within 10 h in mMSM medium and also shows tolerance to a high concentration (1000 mg L−1) of CP. HM01 utilized a broad range of OPs pesticides and other aromatic pollutants including intermediates of CP degradation as sole carbon sources. The maximum CP degradation was obtained at pH 7 and 32 °C. During the degradation, a newly identified intermediate 2,6-dihydroxypyridine was detected through TLC/HPLC/LCMS analysis and a putative pathway was proposed for its degradation. The study also revealed that the organophosphate hydrolase (opdH) gene was responsible for CP degradation, and the opdH-enzyme was located intracellularly. The opdH enzyme was characterized from cell free extract for its optimum pH and temperature requirement, which was 7.0 and 50 °C, respectively. Thus, the results revealed the true potential of HM01 for OPs-bioremediation. Moreover, the strain HM01 showed the fastest rate of CP degradation, among the reported Arthrobacter sp. Graphical Abstract

Publisher

Springer Science and Business Media LLC

Subject

Renewable Energy, Sustainability and the Environment,Biomedical Engineering,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3