Author:
Liu Hesong,Wang Yue,Xiao Jingfan,Wang Qiyao,Liu Qin,Zhang Yuanxing
Abstract
Abstract
Background
Edwardsiella tarda, the etiologic agent of edwardsiellosis, is a devastating fish pathogen prevailing in worldwide aquaculture industries and accounting for severe economic losses. There is a raising concern about E. tarda being a significant zoonotic pathogen, and it is urgent to develop a rapid detection of this pathogen. This is the first study to develop a test strip for rapid detection of E. tarda in turbot.
Results
Mouse monoclonal antibodies (MAbs) and rabbit polyclonal antibody (PAb) against E. tarda were generated from immunization of mice and rabbits with a virulent isolate of E. tarda EIB202. Two MAbs specific to isolates of E. tarda were obtained, and one of them (25C1) was selected to conjugate with colloidal gold as the detector antibody. Rabbit PAb was used as the capture antibody. It was found the strip had no cross-reactivity with non-E. tarda bacterial microbes and the limit of detection (LOD) was 1 × 105 colony-forming units (CFU)/ml. The detection could be visually observed by the naked eye within 5 min. This test strip was verified with a similar detection limit and much less analysis time compared with a dot blot immunoassay (1 × 105 CFU/ml for LOD and 120 min for reaction time). When the samples were mixed with turbot tissue homogenates, strong immunoreactivity was observed over 105 CFU/ml, which suggested that the turbot tissue homogenates did not affect the detection of the strip. Pre-enrichment with homogenized turbot tissue for 12 h could increase the detection limit of the E. tarda present in the sample up to 1 to 10 CFU/ml. In practice, in detecting 20 turbot ascite samples infected by E. tarda, the immunochromatographic test strip showed a high accuracy (100% positive).
Conclusions
The immunochromatographic test strip offers great promise for a rapid, simple, and economical method of E. tarda on-site detection, and with different antibodies, it might be used to detect other aquatic pathogens.
Publisher
Springer Science and Business Media LLC
Subject
Renewable Energy, Sustainability and the Environment,Biomedical Engineering,Food Science,Biotechnology
Reference23 articles.
1. Baird KD, Chikarmane HM, Smolowitz R, Uhlinger KR (2003) Detection of Edwardsiella infections in Opsanus tau by polymerase chain reaction. Biol Bull 205:235–236
2. Swain P, Mukherjee SC, Sahoo PK, Das BK, Pattnaik P, Murjani G, Nayak SK (1999) Dot enzyme linked immunosorbent assay (Dot-ELISA) for diagnosis of Edwardsiella tarda infection in fish. Asian Fish Science 14:89–93
3. Bai FF, Lan JX, Wang Y, Han Y, Zhang XH (2009) Indirect enzyme-linked immunosorbent assay (ELISA) for rapid detection of Edwardsiella tarda. J Fishery Sci of China 16:619–625
4. Chen JD, Lai SY (1998) PCR for direct detection of Edwardsiella tarda from infected fish and environmental water by application of the hemolysin gene. Zool Stud 37:169–176
5. Lan J, Zhang XH, Wang Y, Chen J, Han Y (2008) Isolation of an unusual strain of Edwardsiella tarda from turbot and establish a PCR detection technique with the gyrB gene. J Appl Microbiol 105:644–651
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献