Antarctic yeasts: potential use in a biologic treatment of textile azo dyes

Author:

Ruscasso F.,Cavello I.ORCID,Curutchet G.,Cavalitto S.

Abstract

AbstractWe investigated the dye-removal potential of a collection of 61 cold-adapted yeasts from the King George Island, Antarctica, on agar plates supplemented with 100 mg L–1 of several textile dyes; among which isolates 81% decolorized Reactive Black 5 (RB-5), with 56% decolorizing Reactive Orange 16, but only 26% doing so with Reactive Blue 19 and Acid Blue 74. Furthermore, we evaluated the ligninolytic potential using 2,2ʹ-azino-bis(3-ethylbenzothiazoline-6-sulfonic-acid) diammonium salt-, 3,5-dimethoxy-4-hydroxybenzaldehydazine-, or manganese-supplemented plates but detected no activity, possibly due to a dye-removal mechanism involving reductases. The removal kinetics were studied in liquid medium supplemented with 100 mg L–1 of RB-5 in a selection of 9 yeasts. The highest volumetric-removal rates (η) were found for Candida sake 41E (4.14 mg L–1 h–1), Leucosporidium muscorum F20A (3.90 mg L–1 h–1), and Cystofilobasidium infirmominiatum F13E (3.90 mg L–1 h–1). Different UV–Vis spectra were obtained if the dye removal occurred by biodegradation or biosorption/bioaccumulation. L. muscorum F20A was selected to study the dye-removal mechanism of RB-5 and the effect of different chemical and environmental parameters on the process. Optimum dye-removal conditions were obtained with 10 g L–1 of glucose within an initial medium pH range of 5.0 to 6.0. Up to 700 mg L–1 of dye could be removed in 45 h. High-performance liquid chromatography profiles obtained were consistent with a biodegradation of the dye. Phytotoxicity was estimated by calculating the 50%-inhibition concentration (IC50) with Lactuca sativa L. seeds. These findings propose psychrophilic yeasts as a novel environmentally suitable alternative for the treatment of dye-industry wastewaters.

Funder

Fondo para la Investigación Científica y Tecnológica

UNLP

Publisher

Springer Science and Business Media LLC

Subject

Renewable Energy, Sustainability and the Environment,Biomedical Engineering,Food Science,Biotechnology

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3