Reduction of phenolics in faba bean meal using recombinantly produced and purified Bacillus ligniniphilus catechol 2,3-dioxygenase

Author:

Murphy Rebecca M.,Stanczyk Joanna C.,Huang Fang,Loewen Matthew E.,Yang Trent C.,Loewen Michele C.ORCID

Abstract

AbstractPulse meal should be a valuable product in the animal feed industry based on its strong nutritional and protein profiles. However, it contains anti-nutritional compounds including phenolics (large and small molecular weight), which must be addressed to increase uptake by the industry. Microbial fermentation is currently used as a strategy to decrease larger molecular weight poly-phenolics, but results in the undesirable accumulation of small mono-phenolics. Here, we investigate cell-free biocatalytic reduction of phenolic content in faba bean (Vicia fabaL.) meal. A representative phenolic ring-breaking catechol dioxygenase,Bacillus ligniniphilusL1 catechol 2,3-dioxygenase (BLC23O) was used in this proof-of concept based on its known stability and broad substrate specificity. Initially, large-scale fermentative recombinant production and purification of BLC23O was carried out, with functionality validated by in vitro kinetic analysis. When applied to faba bean meal, BLC23O yielded greatest reductions in phenolic content in a coarse air classified fraction (high carbohydrate), compared to either a fine fraction (high protein) or the original unfractionated meal. However, the upstream hydrolytic release of phenolics from higher molecular weight species (e.g. tannins, or complexes with proteins and carbohydrates) likely remains a rate limiting step, in the absence of other enzymes or microbial fermentation. Consistent with this, when applied to a selection of commercially available purified phenolic compounds, known to occur in faba bean, BLC23O was found to have high activity against monophenolic acids and little if any detectable activity against larger molecular weight compounds. Overall, this study highlights the potential viability of the biocatalytic processing of pulse meals, for optimization of their nutritional and economical value in the animal feed industry.Graphical Abstract

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

Springer Science and Business Media LLC

Subject

Renewable Energy, Sustainability and the Environment,Biomedical Engineering,Food Science,Biotechnology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3