Author:
Yuan Yue,Chen Chunshu,Wang Xueyan,Shen Shaonian,Guo Xiaoyu,Chen Xiaoyi,Yang Fan,Li Xianzhen
Abstract
AbstractImproved understanding of cellulose swelling mechanism is beneficial for increasing the hydrolysis efficiency of cellulosic substrates. Here, we report a family 5 glycoside hydrolase ArCel5 isolated from the cellulose-gelatinizing fungus Arthrobotrys sp. CX1. ArCel5 exhibited low specific hydrolysis activity and high cellulose swelling capability, which suggested that this protein might function as an accessory protein. Homology modeling glycosylation detection revealed that ArCel5 is a multi-domain protein including a family 1 carbohydrate-binding module, a glycosylation linker, and a catalytic domain. The adsorption capacity, structural changes and hydrature index of filter paper treated by different ArCel5 mutants demonstrated that CBM1 and linker played an essential role in recognizing, binding and decrystallizing cellulosic substrates, which further encouraged the synergistic action between ArCel5 and cellulases. Notably, glycosylation modification further strengthened the function of the linker region. Overall, our study provides insight into the cellulose decrystallization mechanism by a novel accessory protein ArCel5 that will benefit future applications.
Graphical Abstract
Funder
National Natural Science Foundation of China
Natural Science Foundation of Liaoning Province
Publisher
Springer Science and Business Media LLC
Subject
Renewable Energy, Sustainability and the Environment,Biomedical Engineering,Food Science,Biotechnology
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献