Sequential extraction of value-added bioproducts from three Chlorella strains using a drying-based combined disruption technique

Author:

Izanlou Zahra,Akhavan Mahdavi MahmoodORCID,Gheshlaghi Reza,Karimian Arash

Abstract

AbstractIn this study, the sequential extraction of the three types of biochemicals from microalgae is employed, which is a more realistic and practical solution for large-scale extraction of bioproducts. The drying, grinding, organic solvent treatment, and ultra-sonication were combined to disrupt cells and sequentially extract bioproducts from three microalgae strains, Chlorella sorokiniana IG-W-96, Chlorella sp. PG-96, and Chlorella vulgaris IG-R-96. As the drying is the most energy-intensive step in cell disruption and sequential extraction, the effect of this step on sequential extraction deeply explored. The results show that total ash-plus contents of biochemicals in freeze-dried samples (95.4 ± 2.8%, 89.3 ± 3.9%, and 77.5 ± 4.2 respectively) are higher than those in oven-dried samples (91.0 ± 2.8%, 89.5 ± 3.0%, 71.4 ± 4.8%, respectively) showing the superiority of freeze drying over oven drying merely for Chlorella vulgaris IG-R-96 (p-value = 0.003) and non-significant variation for Chlorella sorokiniana IG-W-96 (p-value = 0.085) and Chlorella sp. PG-96 (p-value = 0.466). Variation among biochemical contents of strains is due to the difference in cell wall strength confirmed by TEM imaging. The freeze-dried samples achieved higher lipid yields than oven-dried samples. The total carbohydrate yields followed the same pattern. The extraction yields of total protein were higher in freeze-dried samples than in oven-dried. Total mass balance revealed that drying-based sequential extraction of value-added bioproducts could better demonstrate the economic potential of sustainable and renewable algal feedstock than independent assays for each biochemical. Graphical Abstract

Funder

Ferdowsi University of Mashhad

Publisher

Springer Science and Business Media LLC

Subject

Renewable Energy, Sustainability and the Environment,Biomedical Engineering,Food Science,Biotechnology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3