Hyperproduction of extracellular polymeric substance in Pseudomonas fluorescens for efficient chromium (VI) absorption

Author:

Yang Lijie,Chen Zhen,Zhang Ying,Lu Fuping,Liu Yihan,Cao Mingfeng,He NingORCID

Abstract

AbstractA novel extracellular polymeric substance (EPS) with flocculating activity produced by Pseudomonas fluorescein isolated from soil was studied in this paper. Firstly, atmospheric and room temperature plasma (ARTP) was applied to get a mutant of P. fluorescein with higher EPS production. A mutant T4-2 exhibited a 106.48% increase in flocculating activity compared to the original strain. The maximum EPS yield from T4-2 was enhanced up to 6.42 g/L, nearly 10 times higher than the original strain on a 3.6-L bioreactor with optimized fermentation conditions. Moreover, the flocculating activity of the mutant reached 3023.4 U/mL, 10.96-fold higher than that of T4. Further identification showed that EPS from mutant T4-2 was mainly composed of polysaccharide (76.67%) and protein (15.8%) with a molecular weight of 1.17 × 105 Da. The EPS showed excellent adsorption capacities of 80.13 mg/g for chromium (VI), which was much higher than many reported adsorbents such as chitosan and cellulose. The adsorption results were described by Langmuir isotherm and pseudo-second-order kinetic model. The thermodynamic parameters (ΔG0, ΔH0 and ΔS0) revealed that the adsorption process was spontaneous and exothermic. Adsorption mechanisms were speculated to be electrostatic interaction, reduction, and chelation. Graphical Abstract

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Central University Basic Research Fund of China

Publisher

Springer Science and Business Media LLC

Subject

Renewable Energy, Sustainability and the Environment,Biomedical Engineering,Food Science,Biotechnology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3