Kinetic and equilibrium study of the chromatographic separation of glycine and ammonium

Author:

Jiang Lihua,Liu Huiyuan,Qiu Yongjun,Wang Yaosong,Chen Chaoqin,Wang Qifan,Zhao Liming

Abstract

Abstract Background Glycine is extensively applied in the field of food, medicine, agrochemistry, etc. It is usually commercially produced by the chemosynthesis method, which generates large amounts of by-product ammonium chloride. Methods In this paper, the separation of glycine and ammonium chloride was performed with chromatographic column, and deionized water as eluent. The adsorption equilibrium constant K of glycine and ammonium chloride was evaluated by frontal analysis. Based on the equilibrium-dispersive model and a linear driving force of chromatography, the overall mass transfer coefficient k m , axial dispersion coefficient D L , and bed voidage ε t of the column were obtained by moment analysis. Results At 50°C, the equilibrium constants measured were found to be 0.72 and 0.19 for glycine and ammonium chloride, respectively. At 60°C, the equilibrium constants increased to 0.80 and 0.21 for glycine and ammonium chloride, respectively. The value of axial dispersion coefficient D L of glycine had the same order of magnitude with ammonium chloride and was about two times larger than that of ammonium chloride. Their k m at 50°C and 60°C were 1.30 and 0.77 and 2.41 and 0.84 min−1 for glycine and ammonium chloride, respectively. Conclusions The obtained parameters used to simulate the elution curve and the simulation and experimental results matched well, which showed that the parameters obtained were effective. The results make foundation for further study on large-scale separation of glycine from ammonium chloride by SMB chromatography.

Publisher

Springer Science and Business Media LLC

Subject

Renewable Energy, Sustainability and the Environment,Biomedical Engineering,Food Science,Biotechnology

Reference23 articles.

1. Liang C: Progress and market analysis on glycine synthetic technology. J SiChuan Chem Corrosion Contr 2002,5(3):38–41. (in Chinese) (in Chinese)

2. Huiling W, Chongbo L, Ruihong D, Jishen L, Shaohua H: A high rate preparation method of glycine. J NanChang Univ (nat sci) 2000,24(3):295–297. (in Chinese) (in Chinese)

3. Hao CHEN, Xue-mei LI, Chang-feng LI: Study on recycling methanol as medium to produce glycine. Fine Spec Chem 2010, 10: 56–57. (in Chinese) (in Chinese)

4. Bouchard A, Hofland GW, Witkamp G-J: Solubility of glycine polymorphs and recrystallization of β-glycine. J Chem Eng Data 2007,52(5):1626–1629. 10.1021/je700014k

5. Al Eid SM: Chromatographic separation of fructose from date syrup. Int J Food Sci Nutr 2006,57(1–2):83–96. 10.1080/09637480600658286

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3