Author:
Jiang Lihua,Liu Huiyuan,Qiu Yongjun,Wang Yaosong,Chen Chaoqin,Wang Qifan,Zhao Liming
Abstract
Abstract
Background
Glycine is extensively applied in the field of food, medicine, agrochemistry, etc. It is usually commercially produced by the chemosynthesis method, which generates large amounts of by-product ammonium chloride.
Methods
In this paper, the separation of glycine and ammonium chloride was performed with chromatographic column, and deionized water as eluent. The adsorption equilibrium constant K of glycine and ammonium chloride was evaluated by frontal analysis. Based on the equilibrium-dispersive model and a linear driving force of chromatography, the overall mass transfer coefficient k
m
, axial dispersion coefficient D
L
, and bed voidage ε
t
of the column were obtained by moment analysis.
Results
At 50°C, the equilibrium constants measured were found to be 0.72 and 0.19 for glycine and ammonium chloride, respectively. At 60°C, the equilibrium constants increased to 0.80 and 0.21 for glycine and ammonium chloride, respectively. The value of axial dispersion coefficient D
L
of glycine had the same order of magnitude with ammonium chloride and was about two times larger than that of ammonium chloride. Their k
m
at 50°C and 60°C were 1.30 and 0.77 and 2.41 and 0.84 min−1 for glycine and ammonium chloride, respectively.
Conclusions
The obtained parameters used to simulate the elution curve and the simulation and experimental results matched well, which showed that the parameters obtained were effective. The results make foundation for further study on large-scale separation of glycine from ammonium chloride by SMB chromatography.
Publisher
Springer Science and Business Media LLC
Subject
Renewable Energy, Sustainability and the Environment,Biomedical Engineering,Food Science,Biotechnology
Reference23 articles.
1. Liang C: Progress and market analysis on glycine synthetic technology. J SiChuan Chem Corrosion Contr 2002,5(3):38–41. (in Chinese) (in Chinese)
2. Huiling W, Chongbo L, Ruihong D, Jishen L, Shaohua H: A high rate preparation method of glycine. J NanChang Univ (nat sci) 2000,24(3):295–297. (in Chinese) (in Chinese)
3. Hao CHEN, Xue-mei LI, Chang-feng LI: Study on recycling methanol as medium to produce glycine. Fine Spec Chem 2010, 10: 56–57. (in Chinese) (in Chinese)
4. Bouchard A, Hofland GW, Witkamp G-J: Solubility of glycine polymorphs and recrystallization of β-glycine. J Chem Eng Data 2007,52(5):1626–1629. 10.1021/je700014k
5. Al Eid SM: Chromatographic separation of fructose from date syrup. Int J Food Sci Nutr 2006,57(1–2):83–96. 10.1080/09637480600658286
Cited by
28 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献