Post treatment of anaerobically treated brewery effluent using pilot scale horizontal subsurface flow constructed wetland system

Author:

Alayu ErmiasORCID,Leta SeyoumORCID

Abstract

AbstractThe anaerobic process is considered to be a sustainable technology for the treatment of wastewaters rich in organic matter mainly due to its lower energy consumption and production of value-added products such as biogas and organic fertilizer. However, it cannot be seen as providing ‘complete’ environmental solution as its treated effluents would typically not meet the desired discharge limits in terms of residual carbon, nutrients and other pollutants. This has given impetus to subsequent post treatment in order to meet the environmental standards and protect the receiving water bodies and environment. The aim of this study was to evaluate the post-treatment potential of a pilot scale two-stage horizontal subsurface flow constructed wetland (HSSFCW) system planted with Cyperus alternifolius and Typha latifolia, respectively, for enhanced removal of residual carbon and nutrient from an up-flow anaerobic sludge blanket (UASB) reactor treated brewery effluent. A pilot scale two-stage HSSFCW was integrated with the UASB reactor, and its performance efficiency was assessed for the removal of total suspended solids (TSS), chemical oxygen demand (COD), total nitrogen (TN), ammonium–nitrogen (NH4–N), total phosphorous (TP), and orthophosphate (PO43−). Macrophytes aboveground biomass and nutrient accumulation potential were also determined following standard methods. The results from this study showed that Cyperus alternifolius planted CW cell removed 68.5% TSS, 74.2% COD, 55.7% TN, 68.6% NH4–N, 41.1% TP and 48.1% PO43−. Moreover, further polishing with Typha latifolia planted CW cell enhanced the removal efficiencies to 89% TSS, 92% COD, 83.6% TN, 92.9% NH4N, 74.4% TP, and 79.5% PO43−. Strong linearity and Pearson correlation was found between macrophyte biomass and nutrient accumulation in each CW cell (Cyperus alternifolius: R2 = 0.91, r = 0.97 for TN; R2 = 0.92, r = 0.96 for TP; and Typha latifolia: R2 = 0.96, r = 0.98 for TN and TP), and showed substantial nutrient reduction with cumulative nutrient accumulation of 1290 gTNm−2 and 708.7 gTPm−2 in the complete system. The performance of the pilot CW system as a tertiary treatment for brewery wastewater showed that the effluent meets the permissible discharge standards throughout the year excluding phosphorous.

Publisher

Springer Science and Business Media LLC

Subject

Renewable Energy, Sustainability and the Environment,Biomedical Engineering,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3