Enhancing mesenchymal stem cells cultivated on microcarriers in spinner flasks via impeller design optimization for aggregated suspensions

Author:

Zhang Botao,Lu Qiaohui,Dai Gance,Zhou Yi,Ye Qian,Zhou Yan,Tan Wen-Song

Abstract

AbstractDuring the ex vivo expansion of umbilical cord-derived mesenchymal stem cells (hUCMSCs) in a stirred tank bioreactor, the formation of cell–microcarrier aggregates significantly affects cell proliferation and physiological activity, making it difficult to meet the quantity and quality requirements for in vitro research and clinical applications. In this study, computational fluid dynamic (CFD) simulations were used to investigate the effect of an impeller structure in a commercial spinner flask on flow field structure, aggregate formation, and cellular physiological activity. By designing a modified impeller, the aggregate size was reduced, which promoted cell proliferation and stemness maintenance. This study showed that increasing the stirring speed reduced the size of hUCMSC-microcarrier aggregates with the original impeller. However, it also inhibited cell proliferation, decreased activity, and led to spontaneous differentiation. Compared to low stirring speeds, high stirring speeds did not alter the radial flow characteristics and vortex distribution of the flow field, but did generate higher shear rates. The new impeller’s design changed the flow field from radial to axial. The use of the novel impeller with an increased axial pumping rate (Qz) at a similar shear rate compared to the original impeller resulted in a 43.7% reduction in aggregate size, a 37.4% increase in cell density, and a better preservation of the expression of stemness markers (SOX2, OCT4 and NANOG). Increasing the Qz was a key factor in promoting aggregate suspension and size reduction. The results of this study have significant implications for the design of reactors, the optimisation of operating parameters, and the regulation of cellular physiological activity during MSC expansion. Graphical Abstract

Funder

This work was supported by grants from the National Key Research and Development Program of China

Publisher

Springer Science and Business Media LLC

Subject

Renewable Energy, Sustainability and the Environment,Biomedical Engineering,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3