Abstract
AbstractA methanotrophic community was enriched in a semi-continuous reactor under non-aseptic conditions with methane and ammonia as carbon and nitrogen source. After a year of operation, Methylosinus sp., accounted for 80% relative abundance of the total sequences identified from potential polyhydroxyalkanoates (PHAs) producers, dominated the methane-fed enrichment. Prior to induction of PHA accumulation, cells harvested from the parent reactor contained low level of PHA at 4.0 ± 0.3 wt%. The cells were later incubated in the absence of ammonia with various combinations of methane, propionic acid, and valeric acid to induce biosynthesis of poly(3-hydroxybutyrate) (PHB) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV). Previous studies reported that methanotrophic utilization of odd-chain fatty acids for the production of PHAs requires reducing power from methane oxidation. However, our findings demonstrated that the PHB-containing methanotrophic enrichment does not require methane availability to generate 3-hydroxybutyrate (3HB) and 3-hydroxyvalerate (3HV)—when odd-chain fatty acids are presented. The enrichment yielded up to 14 wt% PHA with various mole fractions of 3HV monomer depending on the availability of methane and odd-fatty acids. Overall, the addition of valeric acid resulted in a higher PHA content and a higher 3HV fraction. The highest 3HV fraction (up to 65 mol%) was obtained from the methane–valeric acid experiment, which is higher than those previously reported for PHA-producing methanotrophic mixed microbial cultures.
Funder
Australian Research Commission
Publisher
Springer Science and Business Media LLC
Subject
Renewable Energy, Sustainability and the Environment,Biomedical Engineering,Food Science,Biotechnology
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献