Author:
Chang Dongdong,Wang Cong,Ndayisenga Fabrice,Yu Zhisheng
Abstract
AbstractLevoglucosan is a promising sugar present in the lignocellulose pyrolysis bio-oil, which is a renewable and environment-friendly source for various value-added productions. Although many microbial catalysts have been engineered to produce biofuels and chemicals from levoglucosan, the demerits that these biocatalysts can only utilize pure levoglucosan while inhibited by the inhibitors co-existing with levoglucosan in the bio-oil have greatly limited the industrial-scale application of these biocatalysts in lignocellulose biorefinery. In this study, the previously engineered Escherichia coli LGE2 was evolved for enhanced inhibitor tolerance using long-term adaptive evolution under the stress of multiple inhibitors and finally, a stable mutant E. coli-H was obtained after ~ 374 generations’ evolution. In the bio-oil media with an extremely acidic pH of 3.1, E. coli-H with high inhibitor tolerance exhibited remarkable levoglucosan consumption and ethanol production abilities comparable to the control, while the growth of the non-evolved strain was completely blocked even when the pH was adjusted to 7.0. Finally, 8.4 g/L ethanol was achieved by E. coli-H in the undetoxified bio-oil media with ~ 2.0% (w/v) levoglucosan, reaching 82% of the theoretical yield. Whole-genome re-sequencing to monitor the acquisition of mutations identified 4 new mutations within the globally regulatory genes rssB, yqhA, and basR, and the − 10 box of the putative promoter of yqhD-dgkA operon. Especially, yqhA was the first time to be revealed as a gene responsible for inhibitor tolerance. The mutations were all responsible for improved fitness, while basR mutation greatly contributed to the fitness improvement of E. coli-H. This study, for the first time, generated an inhibitor-tolerant levoglucosan-utilizing strain that could produce cost-effective bioethanol from the toxic bio-oil without detoxification process, and provided important experimental evidence and valuable genetic/proteinic information for the development of other robust microbial platforms involved in lignocellulose biorefining processes.
Funder
National Natural Science Foundation of China
Publisher
Springer Science and Business Media LLC
Subject
Renewable Energy, Sustainability and the Environment,Biomedical Engineering,Food Science,Biotechnology
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献