Abstract
AbstractAdsorption into biochar-derived materials and mycoremediation are promising technologies for removing dyes from solid and liquid matrices. This study presents a combined treatment with adsorption into wood-chip biochar and mycodegradation under solid-state fermentation by Trametes villosa for removing the leather-dye Acid Blue 161. In the first stage, untreated wood-chip biochar, NaOH–depolymerised biochar and KMnO4–depolymerised biochar were assessed for their dye removal efficiency by adsorption. KMnO4–depolymerised biochar exhibited the highest adsorption (85.1 ± 1.9%) after 24 h of contact. KMnO4–depolymerisation modified some physical and chemical properties on the untreated wood-chip biochar, increasing the surface area (50.4 m2 g–1), pore size (1.9 nm), and presence of surface functional groups. Response surface methodology coupled with a Box–Behnken design was used to optimise the AB161 adsorption into the KMnO4–depolymerised biochar. The optimised conditions, pH 3.0, dye concentration 100 mg L–1 and sorbent dosage 2 g L–1, led to a higher dye removal efficiency by adsorption (91.9 ± 1.0%). In a second stage, the wood-chip biochar supplemented with nutrients (1% malt extract and 0.5% peptone) was employed as a solid matrix for growing T. villosa and regenerating the dye-saturated material. After 15 days, T. villosa was able to grow (86.8 ± 0.8%), exhibit laccase activity (621.9 ± 62.3 U L–1), and biodegrade (91.4 ± 1.3%) the dye adsorbed into the KMnO4–depolymerised biochar. Finally, the mycoregenerated biochar was reutilised in a new cycle of adsorption reaching 79.5 ± 2.0% of dye removal efficiency by adsorption. This study revealed the potential of the combined treatment and is an initial assessment for developing commercial alternatives for treating leather industry wastewaters.
Funder
European Regional Development Fund
Welsh European Funding Office
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
Publisher
Springer Science and Business Media LLC
Subject
Renewable Energy, Sustainability and the Environment,Biomedical Engineering,Food Science,Biotechnology
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献