Optimized sampling protocol for mass spectrometry-based metabolomics in Streptomyces

Author:

Liu Xiaoyun,Wang Tong,Sun Xiaojuan,Wang Zejian,Tian Xiwei,Zhuang Yingping,Chu JuORCID

Abstract

Abstract In quantitative metabolomics studies, the most crucial step was arresting snapshots of all interesting metabolites. However, the procedure customized for Streptomyces was so rare that most studies consulted the procedure from other bacteria even yeast, leading to inaccurate and unreliable metabolomics analysis. In this study, a base solution (acetone: ethanol = 1:1, mol/mol) was added to a quenching solution to keep the integrity of the cell membrane. Based on the molar transition energy (ET) of the organic solvents, five solutions were used to carry out the quenching procedures. These were acetone, isoamylol, propanol, methanol, and 60% (v/v) methanol. To the best of our knowledge, this is the first report which has utilized a quenching solution with ET values. Three procedures were also adopted for extraction. These were boiling, freezing–thawing, and grinding ethanol. Following the analysis of the mass balance, amino acids, organic acids, phosphate sugars, and sugar alcohols were measured using gas chromatography with an isotope dilution mass spectrometry. It was found that using isoamylol with a base solution (5:1, v/v) as a quenching solution and that freezing–thawing in liquid nitrogen within 50% (v/v) methanol as an extracting procedure were the best pairing for the quantitative metabolomics of Streptomyces ZYJ-6, and resulted in average recoveries of close to 100%. The concentration of intracellular metabolites obtained from this new quenching solution was between two and ten times higher than that from 60% (v/v) methanol, which until now has been the most commonly used solution. Our findings are the first systematic quantitative metabolomics tools for Streptomyces ZYJ-6 and, therefore, will be important references for research in fields such as 13C based metabolic flux analysis, multi-omic research and genome-scale metabolic model establishment, as well as for other Streptomyces.

Funder

Major State Basic Research Development Program of China

NWO-MoST Joint Program

National Key Special Program

Publisher

Springer Science and Business Media LLC

Subject

Renewable Energy, Sustainability and the Environment,Biomedical Engineering,Food Science,Biotechnology

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3