Role of the interstitium during septic shock: a key to the understanding of fluid dynamics?

Author:

Dargent AugusteORCID,Dumargne Hugo,Labruyère Marie,Brezillon Stéphane,Brassart-Pasco Sylvie,Blot Mathieu,Charles Pierre-Emmanuel,Fournel Isabelle,Quenot Jean-Pierre,Jacquier Marine

Abstract

Abstract Background While not traditionally included in the conceptual understanding of circulation, the interstitium plays a critical role in maintaining fluid homeostasis. Fluid balance regulation is a critical aspect of septic shock, with a well-known association between fluid balance and outcome. The regulation of transcapillary flow is the first key to understand fluid homeostasis during sepsis. Main text Capillary permeability is increased during sepsis, and was classically considered to be necessary and sufficient to explain the increase of capillary filtration during inflammation. However, on the other side of the endothelial wall, the interstitium may play an even greater role to drive capillary leak. Indeed, the interstitial extracellular matrix forms a complex gel-like structure embedded in a collagen skeleton, and has the ability to directly attract intravascular fluid by decreasing its hydrostatic pressure. Thus, interstitium is not a mere passive reservoir, as was long thought, but is probably major determinant of fluid balance regulation during sepsis. Up to this date though, the role of the interstitium during sepsis and septic shock has been largely overlooked. A comprehensive vision of the interstitium may enlight our understanding of septic shock pathophysiology. Overall, we have identified five potential intersections between septic shock pathophysiology and the interstitium: 1. increase of oedema formation, interacting with organ function and metabolites diffusion; 2. interstitial pressure regulation, increasing transcapillary flow; 3. alteration of the extracellular matrix; 4. interstitial secretion of inflammatory mediators; 5. decrease of lymphatic outflow. Conclusions We aimed at reviewing the literature and summarizing the current knowledge along these specific axes, as well as methodological aspects related to interstitium exploration.

Publisher

Springer Science and Business Media LLC

Subject

Critical Care and Intensive Care Medicine

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Sequential recruitment of body fluid spaces for increasing volumes of crystalloid fluid;Frontiers in Physiology;2024-08-28

2. Augmentation of the EPR effect by mild hyperthermia to improve nanoparticle delivery to the tumor;Biochimica et Biophysica Acta (BBA) - Reviews on Cancer;2024-07

3. Klinická fyziologie oběhového systému - mikrocirkulace;Anesteziologie a intenzivní medicína;2024-03-28

4. Update December 2023;Lymphatic Research and Biology;2023-12-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3