Author:
Honeyman Lisa,Bazett Mark,Tomko Tomasz G,Haston Christina K
Abstract
Abstract
Background
Idiopathic pulmonary fibrosis is a disease characterized by alveolar epithelial cell injury, inflammatory cell infiltration and deposition of extracellular matrix in lung tissue. As mouse models of bleomycin-induced pulmonary fibrosis display many of the same phenotypes observed in patients with idiopathic pulmonary fibrosis, they have been used to study various aspects of the disease, including altered expression of microRNAs.
Results
In this work, microRNA expression profiling of the lungs from treated C57BL/6J mice, relative to that of untreated controls, was undertaken to determine which alterations in microRNAs could in part regulate the fibrosis phenotype induced by bleomycin delivered through mini-osmotic pumps. We identified 11 microRNAs, including miR-21 and miR-34a, to be significantly differentially expressed (P < 0.01) in lungs of bleomycin treated mice and confirmed these data with real time PCR measurements. In situ hybridization of both miR-21 and miR-34a indicated that they were expressed in alveolar macrophages. Using a previously reported gene expression profile, we identified 195 genes to be both predicted targets of the 11 microRNAs and of altered expression in bleomycin-induced lung disease of C57BL/6J mice. Pathway analysis with these 195 genes indicated that altered microRNA expression may be associated with hepatocyte growth factor signaling, cholecystokinin/gastrin-mediated signaling, and insulin-like growth factor (IGF-1) signaling, among others, in fibrotic lung disease. The relevance of the IGF-1 pathway in this model was then demonstrated by showing lung tissue of bleomycin treated C57BL/6J mice had increased expression of Igf1 and that increased numbers of Igf-1 positive cells, predominantly in macrophages, were detected in the lungs.
Conclusions
We conclude that altered microRNA expression in macrophages is a feature which putatively influences the insulin-like growth factor signaling component of bleomycin-induced pulmonary fibrosis.
Publisher
Springer Science and Business Media LLC
Subject
Gastroenterology,Dermatology,Hepatology,Rheumatology,Medicine (miscellaneous)
Reference63 articles.
1. Fernandez IE, Eickelberg O: New cellular and molecular mechanisms of lung injury and fibrosis in idiopathic pulmonary fibrosis. Lancet. 2012, 380: 680-688. 10.1016/S0140-6736(12)61144-1.
2. King TE, Pardo A, Selman M: Idiopathic pulmonary fibrosis. Lancet. 2011, 378: 1949-1961. 10.1016/S0140-6736(11)60052-4.
3. Harrison JH, Lazo JS: High dose continuous infusion of bleomycin in mice: a new model for drug-induced pulmonary fibrosis. J Pharmacol Exp Ther. 1987, 243: 1185-1194.
4. Kim HS, Go H, Akira S, Chung DH: TLR2-mediated production of IL-27 and chemokines by respiratory epithelial cells promotes bleomycin-induced pulmonary fibrosis in mice. J Immunol. 2011, 187: 4007-4017. 10.4049/jimmunol.1101654.
5. Russo RC, Guabiraba R, Garcia CC, Barcelos LS, Roffe E, Souza AL, Amaral FA, Cisalpino D, Cassali GD, Doni A: Role of the chemokine receptor CXCR2 in bleomycin-induced pulmonary inflammation and fibrosis. Am J Respir Cell Mol Biol. 2009, 40: 410-421. 10.1165/rcmb.2007-0364OC.
Cited by
35 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献