Author:
Cao Weiqiang,Wang Guan,Lu Hongzhong,Ouyang Liming,Chu Ju,Sui Yufei,Zhuang Yingping
Abstract
Abstract
Background
Glucoamylase is one of the most industrially applied enzymes, produced by Aspergillus species, like Aspergillus niger. Compared to the traditional ways of process optimization, the metabolic engineering strategies to improve glucoamylase production are relatively scarce.
Results
In the previous study combined multi-omics integrative analysis and amino acid supplementation experiment, we predicted four amino acids (alanine, glutamate, glycine and aspartate) as the limited precursors for glucoamylase production in A. niger. To further verify this, five mutants namely OE-ala, OE-glu, OE-gly, OE-asp1 and OE-asp2, derived from the parental strain A. niger CBS 513.88, were constructed respectively for the overexpression of five genes responsible for the biosynthesis of the four kinds of amino acids (An11g02620, An04g00990, An05g00410, An04g06380 and An16g05570). Real-time quantitative PCR revealed that all these genes were successfully overexpressed at the mRNA level while the five mutants exhibited different performance in glucoamylase production in shake flask cultivation. Notably, the results demonstrated that mutant OE-asp2 which was constructed for reinforcing cytosolic aspartate synthetic pathway, exhibited significantly increased glucoamylase activity by 23.5% and 60.3% compared to CBS 513.88 in the cultivation of shake flask and the 5 L fermentor, respectively. Compared to A. niger CBS 513.88, mutant OE-asp2 has a higher intracellular amino acid pool, in particular, alanine, leucine, glycine and glutamine, while the pool of glutamate was decreased.
Conclusion
Our study combines the target prediction from multi-omics analysis with the experimental validation and proves the possibility of increasing glucoamylase production by enhancing limited amino acid biosynthesis. In short, this systematically conducted study will surely deepen the understanding of resources allocation in cell factory and provide new strategies for the rational design of enzyme production strains.
Funder
National Key Research and Development Program of China
Science and Technology Commission of Shanghai Municipality
Fundamental Research Funds for the Central Universities
Publisher
Springer Science and Business Media LLC
Subject
Applied Microbiology and Biotechnology,Bioengineering,Biotechnology
Reference40 articles.
1. Norouzian D, Akbarzadeh A, Scharer JM, Young MM. Fungal glucoamylases. Biotechnol Adv. 2006;24:80–5.
2. Driouch H, Sommer B, Wittmann C. Morphology engineering of Aspergillus niger for improved enzyme production. Biotechnol Bioeng. 2010;105:1058–68.
3. Withers JM, Swift RJ, Wiebe MG, Robson GD, Punt PJ, van den Hondel CAMJJ, Trinci APJ. Optimization and stability of glucoamylase production by recombinant strains of Aspergillus niger in chemostat culture. Biotechnol Bioeng. 1998;59:407–18.
4. Bertolin ET, Costa JAV, Pasquali GDL. Glucoamylase production in batch and fed-batch solid state fermentation: effect of maltose or starch addition. J Microbiol Biotechnol. 2001;11:13–6.
5. Bertolin TE, Schmidell W, Maiorano AE, Casara J, Costa JAV. Influence of carbon, nitrogen and phosphorous sources on glucoamylase production by Aspergillus awamori in solid state fermentation. Zeitschrift Fur Naturforschung C-a J Biosci. 2003;58:708–12.
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献