Development and optimization of a microbial co-culture system for heterologous indigo biosynthesis

Author:

Chen Tingting,Wang Xiaonan,Zhuang Lei,Shao Alan,Lu Yinghua,Zhang HaoranORCID

Abstract

Abstract Background Indigo is a color molecule with a long history of being used as a textile dye. The conventional production methods are facing increasing economy, sustainability and environmental challenges. Therefore, developing a green synthesis method converting renewable feedstocks to indigo using engineered microbes is of great research and application interest. However, the efficiency of the indigo microbial biosynthesis is still low and needs to be improved by proper metabolic engineering strategies. Results In the present study, we adopted several metabolic engineering strategies to establish an efficient microbial biosynthesis system for converting renewable carbon substrates to indigo. First, a microbial co-culture was developed using two individually engineered E. coli strains to accommodate the indigo biosynthesis pathway, and the balancing of the overall pathway was achieved by manipulating the ratio of co-culture strains harboring different pathway modules. Through carbon source optimization and application of biosensor-assisted cell selection circuit, the indigo production was improved significantly. In addition, the global transcription machinery engineering (gTME) approach was utilized to establish a high-performance co-culture variant to further enhance the indigo production. Through the step-wise modification of the established system, the indigo bioproduction reached 104.3 mg/L, which was 11.4-fold higher than the parental indigo producing strain. Conclusion This work combines modular co-culture engineering, biosensing, and gTME for addressing the challenges of the indigo biosynthesis, which has not been explored before. The findings of this study confirm the effectiveness of the developed approach and offer a new perspective for efficient indigo bioproduction. More broadly, this innovative approach has the potential for wider application in future studies of other valuable biochemicals’ biosynthesis.

Funder

Rutgers, The State University of New Jersey

China Scholarship Council

Publisher

Springer Science and Business Media LLC

Subject

Applied Microbiology and Biotechnology,Bioengineering,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3