High production of ectoine from methane in genetically engineered Methylomicrobium alcaliphilum 20Z by preventing ectoine degradation

Author:

Lim Sang Eun,Cho Sukhyeong,Choi Yejin,Na Jeong-Geol,Lee Jinwon

Abstract

Abstract Background Methane is a greenhouse gas with a significant potential to contribute to global warming. The biological conversion of methane to ectoine using methanotrophs represents an environmentally and economically beneficial technology, combining the reduction of methane that would otherwise be combusted and released into the atmosphere with the production of value-added products. Results In this study, high ectoine production was achieved using genetically engineered Methylomicrobium alcaliphilum 20Z, a methanotrophic ectoine-producing bacterium, by knocking out doeA, which encodes a putative ectoine hydrolase, resulting in complete inhibition of ectoine degradation. Ectoine was confirmed to be degraded by doeA to N-α-acetyl-L-2,4-diaminobutyrate under nitrogen depletion conditions. Optimal copper and nitrogen concentrations enhanced biomass and ectoine production, respectively. Under optimal fed-batch fermentation conditions, ectoine production proportionate with biomass production was achieved, resulting in 1.0 g/L of ectoine with 16 g/L of biomass. Upon applying a hyperosmotic shock after high–cell–density culture, 1.5 g/L of ectoine was obtained without further cell growth from methane. Conclusions This study suggests the optimization of a method for the high production of ectoine from methane by preventing ectoine degradation. To our knowledge, the final titer of ectoine obtained by M. alcaliphilum 20ZDP3 was the highest in the ectoine production from methane to date. This is the first study to propose ectoine production from methane applying high cell density culture by preventing ectoine degradation.

Funder

Ministry of Science and ICT

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3