Identification and statistical optimization of a novel alginate polymer extracted from newly isolated Synechocystis algini MNE ON864447 with antibacterial activity

Author:

Saad Mabroka H.,Sidkey Nagwa M.,El-Fakharany Esmail M.

Abstract

AbstractCyanobacteria are a potential source of promising secondary metabolites with different biological activities, including antibacterial, antiviral, antifungal, antiprotozoal, and anticancer activities. To combat the emergence of antibiotic resistance, there is an urgent requirement for new drugs, and cyanobacteria metabolites can constitute alternative new antibacterial medication. The chemical complexity of their exopolysaccharides indicates that they have the potential to be bioactive molecules with many biological activities. The present study aimed to produce and optimise a novel alginate polymer from a newly isolated cyanobacterium, S. algini MNE ON864447, in addition to its promising antibacterial activity. We successfully isolated a new cyanobacterium strain, S. algini MNE ON864447 from the Nile River, which produces alginate as an extracellular polymeric substance. The isolated cyanobacterial alginate was identified using a set of tests, including FTIR, TLC, HPLC, GC–MS, and 1H NMR. Plackett–Burman statistical design showed that working volume (X1), the incubation period (X2), and inoculum size (X3) are the most significant variables affecting the production of alginate. The highest alginate production (3.57 g/L) was obtained using 4% inoculum size in 400 mL medium/L conical flask after 20 days of the incubation period. The extracted alginate showed potent antibacterial activity against both Gram-negative and Gram-positive bacteria and Streptococcus mutants (NCTC10449) are the most sensitive tested pathogen for purified cyanobacterial alginate with inhibition zone diameters of 34 ± 0.1 mm at 10 mg/mL of purified alginate while Vibro cholera (NCTC 8021) the lowest sensitive one and showed inhibition zone diameters of 22.5 ± 0.05 mm at the same cyanobacterial alginate concentration. This antibacterial activity is a critical step in the development of antibacterial drugs and presents a new challenge to fight against multi-resistant bacteria.

Funder

City of Scientific Research and Technological Applications

Publisher

Springer Science and Business Media LLC

Subject

Applied Microbiology and Biotechnology,Bioengineering,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3