Abstract
Abstract
Background
The aryltetralin lignan (−)−podophyllotoxin is a potent antiviral and anti-neoplastic compound that is mainly found in Podophyllum plant species. Over the years, the commercial demand for this compound rose notably because of the high clinical importance of its semi-synthetic chemotherapeutic derivatives etoposide and teniposide. To satisfy this demand, (−)−podophyllotoxin is conventionally isolated from the roots and rhizomes of Sinopodophyllum hexandrum, which can only grow in few regions and is now endangered by overexploitation and environmental damage. For these reasons, targeting the biosynthesis of (−)−podophyllotoxin precursors or analogues is fundamental for the development of novel, more sustainable supply routes.
Results
We recently established a four-step multi-enzyme cascade to convert (+)−pinoresinol into (−)−matairesinol in E. coli. Herein, a five-step multi-enzyme biotransformation of (−)−matairesinol to (−)−deoxypodophyllotoxin was proven effective with 98 % yield at a concentration of 78 mg/L. Furthermore, the extension of this cascade to a sixth step leading to (−)−epipodophyllotoxin was evaluated. To this end, seven enzymes were combined in the reconstituted pathway involving inter alia three plant cytochrome P450 monooxygenases, with two of them being functionally expressed in E. coli for the first time.
Conclusions
Both, (−)−deoxypodophyllotoxin and (−)−epipodophyllotoxin, are direct precursors to etoposide and teniposide. Thus, the reconstitution of biosynthetic reactions of Sinopodophyllum hexandrum as an effective multi-enzyme cascade in E. coli represents a solid step forward towards a more sustainable production of these essential pharmaceuticals.
Funder
Bundesministerium für Bildung und Forschung
Heinrich-Heine-Universität Düsseldorf
Publisher
Springer Science and Business Media LLC
Subject
Applied Microbiology and Biotechnology,Bioengineering,Biotechnology
Reference49 articles.
1. Pan SY, Litscher G, Gao SH, Zhou SF, Yu ZL, Chen HQ, Zhang SF, Tang MK, Sun JN, Ko KM. Historical perspective of traditional indigenous medical practices: the current renaissance and conservation of herbal resources. Evid Based Complement Altern Med. 2014;2014.
2. Zalesak F, Bon DJD, Pospisil J. Lignans and neolignans: plant secondary metabolites as a reservoir of biologically active substances. Pharmacol Res. 2019;146:104284.
3. Teponno RB, Kusari S, Spiteller M. Recent advances in research on lignans and neolignans. Nat Prod Rep. 2016;33:1044–92.
4. Petrovska BB. Historical review of medicinal plants’ usage. Pharmacogn Rev. 2012;6:1–5.
5. Kumari A, Singh D, Kumar S. Biotechnological interventions for harnessing podophyllotoxin from plant and fungal species: current status, challenges, and opportunities for its commercialization. Crit Rev Biotechnol. 2017;37:739–53.
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献